
Air Quality, Knowledge Worker Performance, and

Adaptation: Evidence from GitHub
∗

Felix Holub

Department of Economics, Goethe University Frankfurt

Beate Thies

Department of Economics, University of Vienna

December 2023

Abstract

Highly skilled knowledge workers are important drivers of innovation and long-run

growth. We study how air quality affects productivity and work patterns among these

workers, using data from GitHub, the world’s largest coding platform. We combine panel

data on daily output, working hours, and task choices for a sample of more than 27,000

software developers across four continents with information on concentrations of fine

particulate matter (PM2.5). An increase in air pollution reduces output, measured by the

number of total actions performed on GitHub per day, and induces developers to adapt by

working on easier tasks and by ending work activity earlier. To compensate, they work

more on weekends following high-pollution days, which suggests adverse impacts on

their work-life balance. Exposure to unusually high PM2.5 levels relative to the city-by-

season-by-day-of-week specific mean reduces output quantity by 4.4%, which translates

into a daily loss in output value by approximately $8.4 per developer.
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1 Introduction

Driven by technological innovation, the world of work is undergoing rapid changes. Over

the last decades, computerization has been causing an increase in the demand for workers

performing non-routine, analytical, and interpersonal tasks (Autor et al., 2003; Autor and Price,

2013). Skills that complement digital technologies have been growing in importance: In the

US, the share of jobs requiring intensive digital skills, such as the ability to handle information

technology or to conduct data analyses, has more than quadrupled, increasing from 5% to

23% between 2002 and 2016 (Muro et al., 2017). Work organization has also changed, with

teamwork, flexible schedules, and task discretion replacing traditional 9-to-5 schedules and

direct task assignments, particularly among highly-educated workers (Bresnahan et al., 2002;

Mas and Pallais, 2020; Menon et al., 2020). Because jobs characterized by these task profiles,

skill requirements, and organizational features form the backbone of the modern knowledge

economy and are expected to become even more important as digitization and automation

proceed, it is critical to understand what determines productivity in such settings.

In this paper, we study how environmental shocks impact performance and work patterns

among highly skilled knowledge workers in a flexible work environment. Vast populations are

exposed to environmental conditions such as heat and poor air quality, which have been shown

to reduce labor productivity in several settings. Existing research, however, has considered

routine jobs and/or inflexible work contexts (e.g. Chang et al., 2019; Somanathan et al., 2021).

In the settings described above, workers not only employ different skills, but they also have

flexibility and discretion in organizing their workday. This may enable them to adapt to

productivity shocks, potentially alleviating output effects. Moreover, in collaborative work

settings, impacts of environmental shocks might get dampened, e.g., if co-workers can help

each other to focus, or get amplified due to complementarities if co-workers rely on each

others’ input.

We focus on the effects of air pollution, a ubiquitous public health concern in urban areas

across the globe. Around 82% of the global population are exposed to levels of fine particulate

matter that exceed World Health Organization (WHO) guidelines. We study the causal effect

of air pollution exposure on professional software developers, using high-frequency data from

GitHub to measure developer output and work patterns. As a STEM (science, technology,

engineering, and math) occupation, software development requires analytical and advanced

digital skills and generates high value for consumers, other industries, governments, and the

research community.
1

Therefore, adverse productivity effects of air pollution in this occupation

would have important implications for growth, innovation, and competitiveness. GitHub, the

world’s largest online code hosting platform, is used for storing and jointly working on coding

projects and puts great emphasis on facilitating collaboration between developers. Moreover,

software developers often work in flexible settings that offer discretion over working hours

1
Median annual pay of software developers in the US was $110,140 in 2020 (Bureau of Labor Statistics, 2021).
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and task selection. These features make software development on GitHub a representative

setting for modern knowledge work.
2

The GitHub data allow us to address the challenge that the output of knowledge workers

is often difficult to observe. We collect data on 27,000 users who work on projects owned by

tech companies, indicating that they are professional software developers. The data provide

users’ locations as well as records of all actions they conduct in public projects along with

precise timestamps, including for instance commits (individual code changes) and comments

written in discussion fora. We construct a user-by-day panel including measures of work

quantity and quality, working hours, and task choice for the period between February 2014 and

May 2019. Based on developers’ locations, we match these outcomes to city-level air quality

monitor data on particulate matter smaller than 2.5 µm (PM2.5). To account for endogeneity

in air quality, we follow previous research (e.g. Arceo-Gomez et al., 2016; Jans et al., 2018;

Sager, 2019) by instrumenting PM2.5 concentration with local temperature inversions. The

instrumental variable (IV) strategy exploits the effect of plausibly exogenous changes in vertical

temperature profiles in the atmosphere on local air pollution concentrations, controlling for a

wide range of other weather characteristics.

Our dataset covers 47 countries, including both developing and developed countries, with

large variation in pollution levels, income, and pollution awareness across sample cities. We

exploit this in heterogeneity analyses to explore how air pollution damages are distributed

and to study the mechanisms underlying the pollution impacts.

We present three main findings. First, developers produce less output on days with higher

levels of fine particulate matter. When PM2.5 concentration reaches unusually high levels

of at least one standard deviation above the city-by-month-by-day of week-specific average,

the number of daily actions observed on GitHub falls by 4.4%. We find substantial effect

heterogeneity by type of work: The adverse effect of pollution is mainly driven by a decline

in individual coding activity and work on new tasks. The number of commits for instance

decreases by 5.9%. By contrast, collaborative and responsive work (e.g., commenting on issues)

is less affected. Compared to other occupations studied in previous research, including both

physically and cognitively demanding jobs, the magnitude of the effects on output is moderate.

Nonetheless, the pollution-induced output declines translate into relevant monetary damages

due to the high value generated by software developers. The loss in output value per developer

and day amounts to $3.63 for a standard deviation increase in PM2.5 and $8.4 for days with

unusually high air pollution.

Second, output quality is only marginally affected by changes in air pollution. We find

a minimal decrease in the acceptance rate of code changes a developer proposed on a given

day when PM2.5 increases. A potential explanation for the near-zero impacts on quality, as

2
Evidence in Appendix Figure 1 and Table 1 shows that software development resembles other high-skilled

occupations in skill requirements like critical thinking (except for a greater need for digital skills), and features

like work flexibility and frequent teamwork.
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well as the moderate size of effects on quantity, is worker adaptation to pollution-induced

productivity shocks in this flexible work setting.

Our third main result provides evidence for this: On days with unusually high PM2.5

levels developers work on easier tasks. Code they submit or review changes 3.2% fewer files

and contains 4.1% fewer new lines compared to low pollution days, indicating that the code

addresses less complex tasks. Among developers with stronger adjustment in task choice in

response to PM2.5 exposure, effects on output quantity and quality are attenuated. Software

developers also adapt their working hours, shifting work from high-pollution, low-productivity

weekdays to low-pollution, high-productivity weekends. Notably, developers end work activity

earlier on days with unusually high PM2.5 concentration. To compensate, they work more on

weekends after a workweek with poor air quality, especially if air pollution on the weekend

is moderate, compensating for 39% of the output reduction on the day of exposure. These

adjustments likely explain why, compared to other professions, we find moderate effects of

particulate matter on output. However, this shift to weekend work implies an additional

welfare costs due to forgone leisure time and potential adverse impacts on work-life balance.

The adverse effects of pollution on output quantity arise at concentrations below current

regulatory standards in the European Union and the US, with the strongest effects at lower

levels of PM2.5. The effect magnitude does not vary systematically with country-level pollution

awareness, indicating that the negative effects on output are not driven by avoidance behavior.

This is corroborated by the fact that we find relatively small extensive margin effects. Effects

are substantially larger in locations with an older building stock, suggesting that differences

in effective indoor pollution exposure play an important role. This points to a physiological

mechanism underlying our main results. We also find that, within continents, lower-income

cities experience stronger adverse effects.

To investigate whether pollution exposure also causes long-run consequences, we repeat

our analysis at the monthly level. Air pollution exposure reduces the number of actions

performed per month, with an effect size comparable to the analysis at the daily level. In

addition, pollution decreases the monthly growth rate of a developer’s number of followers on

GitHub, a summary measure of work quantity, quality, and relevance, indicating that it not

only reduces short-run performance but also slows down the build-up of reputation, which

could plausibly have long-run consequences for developers’ career paths.

Our paper makes several contributions to the literature. First, our work demonstrates new

ways to use publicly available data on GitHub activity. While we are not the first to use this

data in economics (for example, current work by McDermott and Hansen (2021) analyzes

the impacts of the COVID-19 pandemic on GitHub work patterns), we propose strategies to

construct a sample of highly active users who are likely professional software developers, to

study task difficulty, and to estimate the monetary value of the output observed on GitHub.

We also directly link to the literature on air pollution and worker productivity. Several

studies document a negative impact of pollution on productivity in manual and routine jobs,
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such as textile workers or call center agents (Adhvaryu et al., 2022; Chang et al., 2016, 2019;

Graff Zivin and Neidell, 2012; He et al., 2019). A few papers also explore the effects of poor air

quality on performance in more cognitively demanding work settings, including error detection

by baseball umpires (Archsmith et al., 2018), quality of speeches held by politicians (Heyes et al.,

2019), and case handling time by judges (Kahn and Li, 2020; Sarmiento, 2022). Related work

investigates performance in cognitively demanding tasks outside of work settings, e.g., among

chess or brain game players (Huang et al., 2020; Krebs and Luechinger, forthcoming; Künn

et al., 2023; La Nauze and Severnini, 2021). While these settings provide precise performance

measures in a specific domain, they do not capture the typical features of work organization in

modern high-skill jobs. Furthermore, the rather inflexible settings studied so far do not allow

to analyze worker adaptation to pollution. We expand the analysis to a STEM profession that

is representative for a large group of knowledge workers in modern, flexible, and collaborative

work environments. Thereby, our study adds novel insights into the labor market cost of

air pollution in the context of ongoing digitalization. Also, we present first evidence on

productivity effects separately for individual and collaborative activities, a distinction absent

from previous work. Furthermore, our study, unlike others that often rely on data from a single

country or location, uses a large, international sample of developers. This allows us to draw

more general conclusions about the pollution-productivity relationship and to explore effect

heterogeneity with respect to local income levels or pollution awareness.
3

Finally, we contribute to the literature on worker adaptation to environmental shocks

and connect it to research on the effect of flexible work arrangements on productivity. Sev-

eral papers study how workers adjust working hours in response to extreme temperatures

(Graff Zivin and Neidell, 2014; Neidell et al., 2021; LoPalo, 2023). Concerning air pollution

shocks, Adhvaryu et al. (2022) and Bassi et al. (2021) demonstrate how managers mitigate

productivity losses, for example by reallocating workers to different tasks. While these studies

focus on rather low-skilled manufacturing workers, our work identifies new margins of adjust-

ment in a flexible high-skilled setting, namely task choice and temporal reallocation of work

activity towards the weekend.
4

By showing that workers exploit their flexibility to adapt to a

productivity shock, and thereby alleviate its adverse impact, our work links to research on

the causal effects of flexible work arrangements and worker autonomy on productivity (e.g.

Beckmann et al., 2017; Angelici and Profeta, 2020). Our results suggest that the ability to adapt

to idiosyncratic productivity shocks might contribute to the positive relationship between

flexible work arrangements and performance.

3
Borgschulte et al. (forthcoming) and Fu et al. (2021) analyze pollution impacts on US labor earnings and

Chinese manufacturing productivity, without focusing on specific professions. We add new evidence to this with

our international sample and our analysis of worker adaptation which requires high-frequency microdata.

4
In parallel work on workers in Mexico City, Hoffmann and Rud (2022) find that workers reallocate labor

supply across days to avoid pollution exposure. In contrast, we center on highly-skilled STEM workers and

interpret the shift as compensating for reduced productivity rather than avoidance.
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2 Background on Particulate Matter

We focus on PM2.5, particulate matter with a diameter of less than 2.5 µm, which encompasses

all solid and liquid particles suspended in the air. In urban areas, most PM2.5 originates

from anthropogenic sources, including traffic, industrial production, and biomass burning

(Karagulian et al., 2015).

The main reasons to focus on PM2.5 are (i) its ability to penetrate indoors, making it

particularly relevant for indoor office workers (Deng et al., 2017), and (ii) the fact that a large

body of research documents that fine particulate matter plays a key role for the adverse health

effects of air pollution. The small particles can penetrate deep into the lungs, causing damage

to the respiratory system, as well as cardiovascular health effects like high blood pressure

and heart diseases (Lederer et al., 2021). While severe health effects are concentrated among

vulnerable groups, even healthy adults can experience mild symptoms, including irritation

in the nose and throat or coughing (Pope, 2000). In response to the evidence on adverse

health effects, several countries introduced standards on annual ambient PM2.5 concentrations

and often tightened them over time. Currently, standards are in place for example in the US

(12 µg/m
3
) and the European Union (25 µg/m

3
). The WHO recommends a level of no more

than 5 µg/m
3
.

Recent clinical and autopsy studies suggest that exposure to fine particles can even affect the

central nervous system as the small particles can reach the brain, causing neuro-inflammation

(Babadjouni et al., 2017). In line with this, higher PM2.5 concentrations have been found to

lower scores in online brain games (La Nauze and Severnini, 2021) and high-stakes exams

(Ebenstein et al., 2016).

Motivated by the prior research on particulate matter and its impact on health and cognitive

functioning, we seek to quantify productivity impacts among knowledge workers in a modern

work environment and investigate potential adaptation responses in such settings.

3 Setting and Data

This section starts with a brief description of GitHub, followed by an overview of the GitHub

data and how we use it to measure developers’ productivity. After checking the validity of

these outcome measures, we describe the air quality and weather data.

3.1 Git and GitHub

GitHub is built on Git, an open-source version control system that tracks changes made to

files, recording who made the change and when. GitHub is a web platform for hosting Git

repositories, the directories where all files belonging to specific projects are stored. On top of

the version control functionality, GitHub also provides collaboration tools. For each repository
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(or repo for short), the owner can choose whether to make it public (visible to everyone)

or private (visible only to repository members). In 2019, GitHub had more than 30 million

registered accounts owning more than 120 million public repositories, making it the world’s

largest host of source code.

The core action in Git is a commit, which refers to saving the current state of the repository

after making changes to one or more files. As such, a commit represents that some work on

code files was conducted by the commit author. Only repository owners and invited team

members can modify files through commits.

The primary collaboration features offered on GitHub are pull requests and issues. A pull

request (PR) is used to propose code changes to a repo. To create a PR, a user creates a copy

of the repository, implements changes in their copy via commits, and then submits these to

the original repository. Repo members then review the proposed changes and decide whether

to accept (i.e., merge) or reject them. Each PR includes a discussion forum where users can

comment directly on the proposed changes. Feedback provided here can be implemented

within the same PR. Hence, PRs facilitate collaborative coding and are used not only for

external contributions but also within project teams.

Issues are text messages typically used to organize tasks within a repo. Like PRs, issues

contain a discussion forum where users can comment on the matter at hand. Repository

members can assign labels to issues to highlight their category (e.g., bug, feature request),

priority, or difficulty. GitHub provides nine default labels, and teams can create additional

labels specific to their repo. Once an issue is resolved, it can be marked as closed.

Additionally, GitHub has social network functions, e.g., options to follow other users and

subscribe to specific repos and issues to receive notifications about new activities.

Since GitHub actions related to commits, PRs, and issues reflect productive work aimed at

building or improving software products, we collect data on these activities to measure output

generated by highly skilled developers.

3.2 GitHub Data on Productivity and Work Patterns

The GHTorrent project provides a database on GitHub users and all their actions in public
repositories. We use the version of the database containing data up to June 1st, 2019. The user
table comprises a unique identifier, login name and registration date for all users registered by

that date. In addition, location and company information as stated on the user profile on this

date is reported. The projects table provides identifiers and names of all public repositories as

well as a reference to the user owning the repo. Activity data is available by type (e.g., commits,

opening issues, PR comments), including exact timestamps and the identifiers of the acting

user and the repository where the event occurred. For certain actions, further information is

reported, such as labels attached to issues.
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We complement this with data from GHArchive, which also records actions in public

repositories and contains additional information on some events, e.g., the title of a commit

(commit message), the number of lines of code added and deleted, and the number of files

changed within a PR. GHArchive and GHTorrent data can be linked via users’ login names.

These data have several favorable features for our analysis. First, the precise records of

GitHub activities allow us to quantify the daily output of software developers, addressing the

long-standing challenge of measuring the work of highly skilled workers during a given period.

Second, the data cover all GitHub users, providing a broader geographic coverage and thus

an advantage in terms of external validity compared to previous studies. Moreover, the rich

information included allows us to measure not only output quantity but also quality and work

patterns, which are crucial in knowledge work.

The data also have limitations. To assign local air quality to users, we rely on self-reported

locations, which may be wrong or outdated, giving rise to measurement error. This, under the

assumption of classical measurement error, leads to attenuation bias such that any adverse

effect found represents a lower bound. Additionally, we lack information on work conducted

in private repositories or outside GitHub. Many users engage in no or minimal work in public

repositories, making it impossible to measure their productivity based on their activity data.

Thus, when constructing our analysis sample, we aim to capture users who are professional

software developers and do a substantial part of their formal work in public GitHub repositories.

Sample Construction. We focus on users who report a location at the city level so that we

can assign local air quality. From this group, we only keep users who have ever committed in

a repository owned by a company, i.e., users with the authority to change the source code of a

company-owned project. This step is intended to focus on professionals who are affiliated with

the companies. To identify these users, we compile a list of company-operated repositories
5

and then use the information on the repository where a commit was made from the GHTorrent

data. To exclude bots—computer programs often used to automate routine tasks—we discard a

small number of users with bot-like behavior.
6

To focus on cases where we observe a substantial part of an individual’s total work, we

admit users to the sample once they made at least 20 commits in public repos in a given month.

They enter the sample in the month after meeting this threshold for the first time. Users

remain in the sample until the end of the observation period unless they conduct fewer than

three unproductive actions in a given month, which include following other users, watching

repositories, (un)subscribing to issues, labeling issues, and (un)assigning issues to users. In

such cases, we drop users from the sample for that month, assuming they moved to a different

platform or private repos. Unproductive actions are not used as outcomes and are based

5
This list is based on https://github.com/d2s/companies/blob/master/src/index.md and lists of open-source

projects operated by Google, Microsoft and Facebook mentioned on their websites.

6
We exclude users in the top 0.1 activity percentile, with over 20% of commits occurring on exact full hours,

or with bot-indicative login names.
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Figure 1: Sample Cities

Note: Points represent sample cities. Circle size is based on the number of users observed in the city.

primarily on the social network functions GitHub offers. Lastly, we restrict the sample to users

living in cities with at least 15 relevant users and covered by our air pollution data. This yields

27,686 users across 220 cities in 47 countries (Figure 1).

Outcome Measures. We compile an unbalanced user-by-day panel for the period between

February 2014 and May 2019, including measures of output quantity, quality, and work pat-

terns.
7

To measure overall daily work quantity, we count the total number of productive

actions conducted per user and day, given as the sum of commits, PR and issue creations, PR

and issue closings, issue reopenings, and comments on PRs, issues or commits. Furthermore,

we separately count commits, as a measure of individual coding work, and comments, as

a measure of interactive activity in response to work conducted by others, to account for

potential effect heterogeneity between these two distinct activity categories.

To assess output quality, we measure (i) the percentage of PRs opened on a given day that

are merged, indicating acceptance, and thus satisfactory code quality, and (ii) the share of

commits made on a given day that get reverted at a later point, signaling significant issues

with the code that cannot be easily rectified.
8

7
During our sample period some users changed their location. Since the GHTorrent data on users is a snapshot

taken on June 1st, 2019, we use earlier versions of the database (one snapshot in each year between 2015 and

2018) to check for movements. 6.3% of users reported more than one distinct location. We identify the city where

they spent the biggest part of the sample period, and keep them in the sample only while residing in this city.

8
Revert commits have specific commit messages allowing to identify them and the commit that is reverted.
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To assess worker adaptation, we build measures of task choice and working hours. Firstly, to

explore whether users switch to easier tasks on high-pollution days, we consider the complexity

of issues and PRs. For PRs, we count the number of new lines of code added, lines of code

deleted, and code files changed. We take the average value of these variables across all PRs

a user worked on a given day, either by creating or reviewing the respective PR. For issue

difficulty, we rely on the user-assigned issue labels which indicate that a given issue is relatively

easy, e.g., the default labels good first issue and documentation (Tan et al., 2020), or individual

labels such as low-hanging fruit. The complete list of labels we use to identify easy tasks is

depicted in Appendix Table 2. We construct the share of all issue events conducted by the

user (commenting, opening, closing, or reopening of issues) which refer to an easy issue. With

this approach, we do not have to evaluate issue complexity ourselves but rely on the experts’

assessment. Furthermore, the label is visible to all users, i.e., workers searching for easy tasks

can easily identify suitable issues. Secondly, we investigate whether users try to make up for a

productivity shock by working longer hours in the evening or on the weekend. Evening work

is measured by the time of the last action of the day (in minutes since midnight). Weekend

work is the sum of actions conducted on Saturdays and Sundays.

Finally, as a summary measure of the quantity, quality, and relevance of a user’s work, we

consider the monthly growth rate of their followers. This allows to investigate whether air

pollution shocks have only temporary effects, or also impair users’ reputation and influence

over a more extended period.

All outcomes, with details on their construction, are listed in Appendix Table 3.

Descriptives. While our sample comprises just 0.085% of all GitHub users, they conduct a

disproportionally large share of activities in public repositories, namely 2% of issue creations,

8% of issue closings, 11% of comments, and 7% of PR openings and closings. Hence, the selected

users are a highly active subsample. This is confirmed by the summary statistics on the outcome

variables (Table 1). The average number of daily actions is 2.68, of which 1.27 are commits and

0.88 are comments. The remaining productive GitHub actions—opening and closing issues and

PRs—occur less frequently. On average, users are active on 36% of all days during the sample

period, and conditional on being active, the mean number of actions is 7.45. These figures

imply high activity levels, especially given that they include weekends and holidays. Commit

reversals, which signify significant errors, are rare, occurring in only 0.2% of all commits. The

share of PRs not getting accepted is higher at 33%. On average, 7% of all issue events (opening,

closing, reopening, or commenting on an issue) refer to an easy issue. The mean time of the

final action of the day is 5:32 pm.
9

Figure 2 depicts the distribution of activity across days of the week and hours of the day.

The solid lines represent the share of all activity conducted during each hour of the day on

weekdays (left) or weekends (right) for commits, comments, and total actions. Activity levels

9
To account for the tendency of high-skill workers to work long hours in the evening, we define a workday

from 3 am on the calendar date to 3 am on the following day.
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Table 1: Summary Statistics for the Analysis Sample of GitHub Users

Mean SD SD (within) Min Max Observations

OutputQuantity
Actions 2.68 7.09 6.31 0 293 16,499,962

of which Commits 1.27 3.78 3.51 0 234 16,499,962

Comments 0.88 3.26 2.85 0 280 16,499,962

PRs opened 0.15 0.69 0.65 0 151 16,499,962

Issues opened 0.10 0.79 0.73 0 222 16,499,962

PRs closed 0.16 0.92 0.87 0 284 16,499,962

Issues closed 0.11 0.87 0.85 0 263 16,499,962

Any action 0.36 0.48 0.43 0 1 16,499,962

Actions | Actions > 0 7.45 10.22 9.08 1 293 5,925,638

OutputQuality
PR Acceptance Rate 0.67 0.45 0.40 0 1.0 1,237,267

Share commits reverted 0.002 0.027 0.027 0 1 4,448,241

Task Complexity
Share easy issue events 0.07 0.21 0.20 0 1.0 3,515,595

Files changed per PR 6.68 18.57 17.97 0 641 1,781,745

Lines added per PR 259.24 1271.62 1239.28 0 41681 1,781,745

Lines deleted per PR 104.80 594.43 582.11 0 19778 1,781,745

Working Hours
Time last action 17:32 5.03 hours 4.66 hours 3:00 3:00 5,902,740

Notes: Table shows key measures of output quantity, quality, complexity, and working hours at the developer×date level.

peak during core working hours and decline in the evening and night hours and on weekends.

Notable activity during evening hours and on weekends is not uncommon among highly

educated workers (Mas and Pallais, 2020). The distribution is similar across all three variables,

but comments, i.e., more interactive activities, are even more concentrated during standard

working hours compared to commits, i.e., individual coding activities. This is plausible given

that more collaborative tasks are more productive at times when other users are working as

well.

Finally, Figure 3 presents information about the work status of users in our sample. The left

plot depicts the most frequent terms used in the biographies (bios) on their GitHub profiles.

35% of the users provide such a self-description. We measure the occurrence of each term in

the bios after stemming and removing stop words. Three terms stand out: engineer/engineering,

software, and developer/development. The right plot complements this with information on

employers reported by users on their profiles. 65% of the users provide some information

in this field. The most frequently reported employers are major tech companies strongly

engaged in open-source. While we cannot assess if the users who provide this information are

representative for the whole sample, the high prevalence of work-related terms and notable

tech firms, along with the peak in activity during core working hours, strongly indicates that

11



Figure 2: Distribution of Activity across Hours of the Day and Days of the Week

Note: Hourly share of activities on weekdays (left) or weekends (right), for total actions, comments, and commits. Grey area: core working

hours, 9 am to 6 pm on weekdays.

we are capturing professional developers using GitHub for formal work. Thus, in the remainder

of the paper, we refer to the sample users as ‘developers’.

3.3 Gitcoin: Monetary Value of GitHub Activity

To validate our performance metrics and to translate the effects of air pollution into monetary

damages, we draw on data from the web platform Gitcoin. On Gitcoin, GitHub project teams

aiming to incentivize external contributions to their projects post issues from their public repos

and announce a payment they offer for a solution. Freelance developers can apply to solve

these issues and earn the payments for their contributions. Work on the issues is submitted in

the form of a PR in the respective GitHub repo. If the PR is accepted by the issue funder, the

PR author receives the payment, typically in cryptocurrencies.

We collected data on 292 issues for which PRs were submitted and payments made by

March 2022 via the Gitcoin API, including the value of the payment in USD and the hours

worked on the PR as reported by the submitting user. We merge this with information on the

size of the respective pull request obtained via the GitHub API (number of commits, number

of lines of code added and deleted, and number of files changed). A detailed description of the

data is provided in Appendix C.

We find mean payments of $354 per pull request and $112 per commit. Developers spend

on average 1.8 hours per commit. This implies an hourly wage of $62, very close to the mean

wage of $58 among software developers in the US in 2021 (Bureau of Labor Statistics, 2021).
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Figure 3: Most Frequent Terms from User Self-Descriptions and Company Fields

Note: Left: Most frequent terms from user self-descriptions, after stemming and removing stopwords. Data from 9,696 user bios, accessed in

2021 via the GitHub API. Right: Most frequent companies. Data from June 2019 on 17,928 users. Horizontal axes measure share of users

reporting the respective term or company.

We will use the monetary values of commits and PRs to translate the effects of air pollution

into monetary damages.

Are the outcomes we consider valid measures of productivity and task complexity? In

Appendix Tables 1 to 3 we use the Gitcoin data to test this. Both, payments awarded through

Gitcoin for PRs and the time spent on PRs, are positively correlated with the number of commits

that PRs comprise. This confirms that changes in the number of commits reflect fluctuations in

developer productivity. Additionally, holding the number of commits constant, adding more

lines of code and changing more files in a PR is associated with a higher payment, suggesting

that these variables indeed reflect task complexity. 12% of the Gitcoin issues are labeled as

easy according to our definition. Even when controlling for all previously mentioned PR

characteristics, these issue labels are associated with a 35% decline in the payment for a PR,

supporting their validity as indicators for easy tasks.

3.4 Environmental Data

Air Quality. We collect PM2.5 concentration data from outdoor monitors from several

environmental agencies. For cities without publicly available monitor data, we use high-

resolution reanalysis data from the Copernicus Atmosphere Monitoring Service (CAMS).

Reanalysis data are constructed by combining ground-level measurements, satellite images,

and atmospheric transport models. Appendix Table 4 provides a list of the data sources. The

data are provided at daily or hourly intervals. We adjust hourly data to local time before

aggregating to the daily level. Cities are assigned the simple average of all monitor readings

within a 40 km radius around the city centroid. For cities covered by the CAMS data, we

only use points within 25 km due to the high resolution. Our data on PM2.5 covers 95% of

observations in the GitHub panel.
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Figure 4: Regional distribution of daily PM2.5

Notes: Oceania: Australia, New Zealand. Northern Europe: Scandinavia, UK, Ireland, Baltics. Southern Europe: Portugal, Spain, Italy, Greece,

Israel, Croatia, Serbia, Slovenia, Turkey. Asia: Bangladesh, China, India, Indonesia, Japan, Korea, Hong Kong, Singapore, Taiwan. Northern

America: US, Canada, Mexico. Western Europe: Switzerland, Austria, France, Germany, Belgium, Netherlands. Eastern Europe: Poland, Czech

Republic, Hungary, Belarus, Ukraine, Slovakia, Bulgaria, Romania, Russia.

We winsorize PM2.5 at the continent-specific 0.1th and 99.9th percentile to mitigate the

influence of extreme outliers, such as heavy wildfire smoke or industrial accidents. The

population-weighted average PM2.5 concentration in the sample is 15.15 µg/m
3

(standard

deviation: 22.3 µg/m
3
, within-city: 17.6 µg/m

3
), which is between the regulatory standards on

annual PM2.5 concentration in the US (12 µg/m
3
) and the EU (25 µg/m

3
). Figure 4 displays the

distribution of daily PM2.5 for seven large geographic regions, 𝑅 ∈ {Northern Europe, Southern

Europe, Western Europe, Eastern Europe, North America, Oceania, Asia} and demonstrates

substantial regional heterogeneity. While concentrations above 20 µg/m
3

are infrequent in

North America, Oceania, and Northern Europe, cities in Southern and Eastern Europe ex-

perience this level of pollution on 26% of all days, and Asian cities as much as 65% of the

time.

Thermal Inversions. The instrumental variable approach is based on thermal inversions,

which are defined as atmospheric conditions where the temperature of upper air layers is

higher than the temperature at the earth’s surface. Under normal conditions, air temperature

decreases with altitude. To construct inversion measures, we collect reanalysis data on hourly

temperature at the surface level and at several pressure levels from the European Centre for

Medium-Range Weather Forecasts (ECMWF) ERA5 products. The data is reported on a 0.25-

degree grid, corresponding to roughly 28 km× 28 km at the equator. For each grid point and

hour, we compute the difference between upper air temperature and surface air temperature

in degrees Celsius. Upper air temperature is measured at the pressure level 25 hPa above
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the surface pressure level, which corresponds to an altitude difference of approximately 210

meters.

We then calculate the average temperature difference during local nighttime hours (mid-

night to 6 am), after translating timestamps into local time. To obtain city× day level variables,

each city is assigned the inverse distance weighted average nighttime temperature difference

from the four grid points closest to its centroid. This continuous measure of inversion strength

will be our main instrument for local pollution. In robustness checks, we use an inversion

indicator as an alternative instrument, which takes value one if the difference between upper

air and surface temperature is positive and zero otherwise. Inversions occur on 46% of all

days during the sample period, and the median temperature difference is -0.3°C, with the first

and third quartiles at -1.7°C and 2.1°C, respectively. Appendix Table 5 shows the frequency of

inversions by geographic region.

Further Meteorological Conditions. To construct control variables for daily weather

conditions we use the ERA5-land product from the ECMWF. It provides hourly data on air

temperature, precipitation, and dewpoint temperature on a 0.1-degree grid. We compute daily

mean, minimum and maximum temperature, precipitation, and relative humidity at each grid

point and then assign each city the inverse distance weighted average weather conditions

from the eight closest grid points.

We collect reanalysis data on wind conditions from the Japan Meteorological Agency’s

JRA-55 product. The u- and v-component of wind, i.e., the wind vectors, are reported every six

hours on a 1.25-degree grid. We aggregate to the daily level and compute the inverse distance

weighted average of u- and v-vectors at the four grid points located closest to each city’s

centroid. Finally, daily average wind speed and direction are computed from the city-level u-

and v-vectors.

The North American west coast, where some of the largest cities in our sample are located,

frequently experiences severe wildfires, leading to major peaks in air pollution due to smoke.

Recent research has shown that wildfire smoke exposure can trigger avoidance behavior (Burke

et al., 2022). To ensure that our estimates capture physiological impacts of PM2.5 exposure

rather than behavioral responses to wildfires, we construct control variables for heavy smoke

events. The National Oceanographic and Atmospheric Administration’s Office of Satellite

and Product Operations provides data on the location and intensity of smoke plumes across

North America. We define a city as being affected by wildfire smoke if a plume overlaps with

a 15 km radius around its centroid, and aggregate the data to the daily level by summing over

the intensities of all plumes covering a city. We define a heavy smoke indicator taking value

one if the city was covered by a plume of the highest intensity or if the sum exceeds twice

the maximum intensity. 0.3% of all city-day observations and 9% of all observations with any

smoke exposure are classified as heavy smoke days.
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4 Research Design

Baseline Regression Model. To analyze how short-run variation in local particulate matter

concentration affects output and work patterns of professional software developers, we specify

a model for developers living in city 𝑐 on day 𝑑 :

𝑦𝑐,𝑑 = 𝛽PM𝑐,𝑑 +w′
𝑐,𝑑
𝛾𝑅(𝑐) + 𝛿𝑅(𝑐)ℎ𝑐,𝑑 + 𝜇𝑐 + 𝜇𝑅(𝑐),𝑑𝑜𝑤 (𝑑) + 𝜇𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) + 𝜀𝑐,𝑑 . (1)

Here, 𝑦𝑐,𝑑 denotes one of the measures of output quantity, quality, or work patterns described

in the previous section. We obtain this variable through an auxiliary regression that controls

for developer experience in using GitHub and a developer fixed effect. By doing so, we can

reduce the computational burden without losing variation in the regressor of interest which

is observed at the city-day level. This procedure is commonly employed (e.g. Currie et al.,

2015) and asymptotically equivalent to estimating the underlying individual-level regressions

(Donald and Lang, 2007). Appendix D provides a more detailed description.

PM𝑐,𝑑 is a measure of particulate pollution and varies across cities 𝑐 and days 𝑑 . The

fixed effect 𝜇𝑐 controls for time-invariant unobserved factors at the city level. Region-specific

year×month fixed effects 𝜇𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) capture time-varying productivity shocks common to

all developers in a geographic region 𝑅. Region-specific day-of-week fixed effects 𝜇𝑅(𝑐),𝑑𝑜𝑤 (𝑑)

and an indicator for holidays, ℎ𝑐,𝑑 , control for fluctuations in work patterns and productivity

across days of the week and public holidays. These fluctuations are allowed to vary in intensity

across different world regions. The vector w𝑐,𝑑 contains weather variables that can be correlated

with air quality, inversions, and work patterns. It includes a series of indicator variables for

daily mean temperature falling into bins defined based on the 5th, 10th, 20th, 35th, 65th, 80th,

90th, and 95th percentiles of the city-specific temperature distributions, cubic polynomials

of precipitation, relative humidity, and wind speed, as well as a dummy indicating heavy

wildfire smoke. The effects of all weather variables are allowed to differ across regions 𝑅,

taking into account that for instance individuals in warmer regions might respond differently

to unusually warm temperatures than individuals in colder regions. We weight all regressions

by the number of underlying developer observations in each city–day cell and cluster standard

errors at the city level.

While we include a wide range of controls to account for sorting into different cities or

fluctuations in economic conditions, PM𝑐,𝑑 may still be endogenous in Equation (1) due to

unobservable factors that co-vary with particulate matter and productivity. Variations in local

economic conditions can for instance affect air pollution and developers’ output at the same

time. Similarly, local events like a football match or the closing of a bridge may impact both

traffic and work patterns. Besides omitted variable bias, a second issue is measurement error in

individual pollution exposure, which we have to proxy for by city-level averages, generating

attenuation bias in the OLS estimator.
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IV Estimation. To address endogeneity, we follow several recent studies (e.g. Arceo-Gomez

et al., 2016) and instrument local pollution levels with temperature inversions. During an

inversion period, air temperature increases with altitude, such that a warm upper air layer acts

as a ceiling, preventing pollution emitted at the surface level from dispersing and trapping it

near the ground. Consequently, the same amount of surface-level emissions results in higher

pollution concentrations compared to normal periods. This effect on air quality is stronger,

the stronger the inversion, i.e., the larger the difference between the upper and surface air

temperature. Our instrument for pollution will therefore be the temperature difference between

upper and lower layers, Inv Strength𝑐𝑑 = Δ𝑇𝑐𝑑 .

Following Jans et al. (2018) and Sager (2019), we focus on nighttime inversion strength, as

daytime inversions may be visually noticeable in some regions which could lead to behavioral

adjustments. Nighttime inversions are less likely to trigger such responses, strengthening the

exogeneity of the instrument.

Inversions can be correlated with weather conditions. For instance, calm winds tend to

reduce the mixing of cold and warm air, creating favorable conditions for the formation of

inversions. Weather conditions could also affect labor-leisure trade-offs (Graff Zivin and Neidell,

2014) and thereby the output of developers via channels other than air quality. Moreover, in

many places, inversions exhibit seasonality, with higher frequency during winter. Therefore, it

is important to control for the wide range of weather conditions in w𝑐,𝑑 and to include fixed

effects capturing seasonality effects.

In our global sample, the impact of a temperature inversion on air quality is not uniform

across all cities. When a warm upper air layer hinders pollution from dispersing, this causes a

strong increase in pollution concentration in locations with high emissions, whereas areas

with low levels of ground-level emissions are much less affected (Krebs and Luechinger,

forthcoming). Additionally, the effects of inversions can differ depending on geographic and

topographic factors, such as when mountains further impede air circulation. To account for

this, we allow the impact of inversion strength on PM2.5 to vary between groups of cities that

are geographically close to each other and exhibit similar pollution levels. We use a k-means

clustering algorithm to assign each city into a group 𝑔 based on longitude, latitude, and average

PM2.5 concentration during the sample period. In our baseline specification, we form 25 groups,

which are depicted in Appendix Figure 2

The first stage of the IV estimation is as follows, where the coefficient 𝜋𝑔 is allowed to vary

across city-groups 𝑔 ∈ {1, 2, . . . , 25}:

PM𝑐,𝑑 = 𝜋𝑔Δ𝑇𝑐𝑑 +w′
𝑐,𝑑
𝛾𝑅(𝑐) + 𝛿𝑅(𝑐)ℎ𝑐,𝑑 + 𝜇𝑐 + 𝜇𝑅(𝑐),𝑑𝑜𝑤 (𝑑) + 𝜇𝑅(𝑐),𝑦𝑟 (𝑑),𝑚(𝑑) + 𝜀𝑐,𝑑 . (2)

Figure 5 illustrates the first stage relationship for five city groups. It shows binned scatter

plots of residualized PM2.5 concentration, after taking out the weather controls and fixed

effects mentioned above, against inversion strength. A linear function fits the relationship
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Figure 5: Illustration of the First Stage

Note: Binned scatter plots of residualized PM2.5 and inversion strength in five city groups. Blue lines: linear fit. Groups: 9 Southeast European

cities (Athens), 17 Central European cities (Frankfurt), 8 Chinese cities (Beijing), 16 cities in/around Silicon Valley (San Francisco), 15 cities in

the Eastern US and Canada (New York).

between inversion strength and air pollution reasonably well. As anticipated, an increase in

the temperature difference between upper and surface level air has a more pronounced effect

on PM2.5 concentration in cities with higher baseline pollution levels (e.g., Beijing vs. New

York). In Appendix Figure 3 we present these plots for all 25 city groups.

Pollution Measures Our primary measure of air pollution is the daily average PM2.5 con-

centration in µg/m
3
. As an alternative measure, we define a binary variable that we will refer

to as a pollution shock,

PM2.5 shockcd ≡ 1
{
PM𝑐,𝑑 >

√︃
V̂ar [PM | 𝑐] + Ê [PM | 𝑐,𝑚(𝑑), dow(𝑐)]

}
. (3)

The indicator takes value one if the city-day concentration of PM2.5 is more than one city-

specific standard deviation above the level expected for the given city, calendar month, and

day of week. In essence, it reflects unusually high pollution levels in a location× season× day-

of-week cell. This measure captures non-linear effects of pollution and allows these to vary

by location and time. 10.6% of all city× day observations are characterized by such a PM2.5

shock.
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Table 2: IV Estimates of the Effect of PM2.5 on Work Quantity

Actions Commits Comments Any actions
(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 −0.0030 −0.0015 −0.0008 −0.0002

(0.0006) (0.0004) (0.0002) (0.00004)

{<0.0001} {0.0008} {0.0011} {<0.0001}
PM2.5 shock −0.118 −0.075 −0.030 −0.010

(0.066) (0.029) (0.030) (0.005)

{0.088} {0.018} {0.318} {0.047}
Observations 397,277 397,277 397,277 397,277

Mean dep. var. 2.68 1.27 0.88 0.36

First stage F-stat. 160 76 160 76 160 76 160 76

% change -0.11 -4.4 -0.12 -5.9 -0.09 -3.4 -0.06 -2.8

% of full effect 17.8 23.2

Notes: Regressor of interest is PM2.5 in µg/m
3

in odd-numbered columns, or a dummy as in Equation (3) in even-numbered columns.

Covariates: Eight bins for mean daily temperature, third-order polynomials in wind speed, precipitation, and relative humidity, indicators

for heavy wildfire smoke and holidays, as well as city, region-by-day-of-week, and region-by-year-by-month fixed effects. Coefficients on

weather controls can vary across regions. Regressions weighted by number of developers in city-month cell. Standard errors, clustered by

city, in parentheses. Benjamini-Hochberg p-values in curly brackets.

5 Main Results

In this section, we first present results on how PM2.5 exposure affects the quantity and quality

of output developers produce. Thereafter we show that they use two margins of adjustment,

task choice and working hours, to adapt to increases in pollution concentration.

5.1 WorkQuantity

Table 2 displays 2SLS estimates of the effect of PM2.5 exposure on output quantity. We find

that an increase by 1 µg/m
3

causes developers’ overall output, measured by total actions, to

fall by 0.0030 or 0.11% of the sample mean. Half of this decline is driven by a reduction in

the number of commits, our primary measure of individual coding activity, which decreases

by 0.0015 or 0.12%. The decline in the number of comments written in discussion fora, as a

measure of collaborative work, implies a slightly smaller reduction of 0.09% of the sample

mean. The first stage F-statistic on the excluded instruments is 160, indicating that the IVs are

sufficiently strong. For an increase in PM2.5 by one within-city standard deviation (17.6 µg/m
3
),

the estimates imply reductions of 1.7% to 2.1% across the three outcomes. When we use

the binary PM2.5 shock variable as regressor, the F-statistic is again well above the common

threshold for a sufficiently strong first stage. The 2SLS estimates imply that on a day with

unusually high pollution, the number of total actions falls by 0.118 or 4.4% of the mean. The

number of commits falls by 0.075 or 5.9%. The effect on comments is smaller and not statistically

significant. In sum, these results imply that fine particulate matter exposure exerts a negative

effect on developer output which is mostly driven by days with relatively poor air quality.

In Columns 7 and 8 we explore the contribution of the extensive margin to the overall

reduction in work quantity. The dependent variable is an indicator for a positive activity level,
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i.e., 1{actions𝑖𝑑 > 0}. For both measures of pollution, estimates are negative and significant,

implying that the extensive margin effect contributes approximately 18-23% to the full reduction

in actions. Hence, the intensive margin response is quantitatively more important. This result is

plausible given that our sample of GitHub users likely comprises mostly young and middle-aged

adults. They are unlikely to suffer severe health damages from short-run pollution exposure

which prevent them from working, but rather experience subtle effects on health and cognitive

function.

As we derived our results by testing eight hypotheses, we report p-values corrected for

multiple hypothesis testing following the Benjamini-Hochberg procedure in curly brackets.

In Appendix Table 6, we investigate less frequent action types—the number of issues and

PRs opened and closed, respectively. Like a commit, opening a PR reflects individual coding

work. Closing a PR implies decision-making about whether to accept or reject proposed

code changes, and opening/closing issues generally starts/ends a discussion with other users.

Consistent with the above results, we find negative impacts of a 1 µg/m
3

increase in PM2.5.

The effects are largest for the number of new issues and PRs opened with -0.23% and -0.11%

of the mean, respectively, compared to reductions by -0.08% in the number of PRs and issues

closed. The pattern for PM2.5 shocks is similar, but only the effect on opening new issues is

statistically significant. Together with the results in Table 2, this implies that in response to

higher air pollution, developers mostly reduce individual coding activity and activities on new

tasks (commits, opening new issues), whereas effects are smaller for activities that respond

to work conducted by others (writing comments, closing issues and PRs). This suggests that

workers in collaborative work environments prioritize activities that involve co-workers when

hit by an adverse productivity shock.

Columns 1 to 3 of Table 7 show OLS estimates for total actions, commits, and comments.

We obtain negative estimates for all outcomes with both PM2.5 in levels and the PM2.5 shock

indicator, but these are significant only for PM2.5 in levels. Mirroring a common finding in the

literature on air pollution impacts, all estimates are substantially smaller than the 2SLS results,

pointing towards attenuation bias due to measurement error.

Effect Magnitude. We conduct three exercises to assess the magnitude and economic

relevance of the estimates. Firstly, we compare the impact of a PM2.5 shock to the effect of

another highly relevant environmental shock, exposure to extreme outdoor temperatures,

which have been found to affect, e.g., student performance, Twitter user sentiment, and mental

health (Park, 2020; Baylis, 2020; Mullins and White, 2019). Figure 6 reproduces the estimated

effects of a PM2.5 shock on total actions and commits in graphical form (point estimates with

confidence intervals displayed in black). In addition, coefficients from OLS regressions of

the same outcomes on maximum daily temperature are presented. Specifically, we use eight

dummy variables indicating whether maximum daily temperature falls into a certain percentile

range of the city-specific distribution, as displayed on the x-axis. The reference category is
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Figure 6: Effects of PM2.5 and heat on work quantity

Note: Black points and bands: IV estimates with 90 and 95% confidence intervals for PM2.5 shocks from Table 2. Blue lines and shades: OLS

estimates with 90 and 95% confidence intervals for maximum daily temperature range indicators shown on the x-axis. Covariates: Flexible

controls for minimum temperature, precipitation, wind speed and relative humidity, indicators for heavy wildfire smoke and holidays, as

well as city, region-by-day-of-week, and region-by-year-by-month fixed effects. Standard errors clustered by city. Regressions weighted by

number of developers in city-month cell.

maximum temperature between the 35th and the 65th percentile. For both outcomes, the

effects of temperature are u-shaped: Both unusually cold and unusually hot temperatures have

adverse effects, but only the impact of heat is statistically significant. Even though software

developers might work in climate-controlled offices, heat exposure during commuting times or

while running errands could generate these negative effects. While the IV estimates for PM2.5

shocks, which occur on 10% of all days, are less precise than the OLS estimates for temperature,

their point estimates are more than twice the estimates for the temperature bin representing

maximum temperature above the 95th percentile. Hence, the adverse productivity effects

of poor air quality exceed those of extreme temperatures, an environmental shock of high

relevance given global warming.

Secondly, we compute elasticities for the effect of PM2.5 on commits and total actions,

and compare these to previous studies on productivity or performance effects. Our elasticity

estimates of -0.017 and -0.018 are at the lower end of the range of effect sizes shown in Figure 7.

The effect on developers’ output is much smaller than estimates obtained for judges and chess

players, who also engage in cognitively demanding tasks. A potential explanation is that

chess tournaments and court hearings are highly inflexible settings that do not allow for

adapting working hours or the choice of tasks to productivity shocks. This contrasts with our

setting, and we provide evidence on worker adjustment to an increase in PM2.5 in Section 5.3.

This underscores the importance of our analysis: It might be misleading to estimate the total

economic cost of air pollution based on inflexible settings if most knowledge workers have at

least some degree of flexibility in organizing their workday.
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Figure 7: Effects of air pollution across occupations

Note: Elasticities of commits and actions based on Table 2. Elasticities from other studies: Künn et al. (2023) (chess players), Sarmiento (2022)

(judges), Kahn and Li (2020) (judges (2)), Chang et al. (2019) (call center agents), He et al. (2019) (textile workers (2)), Adhvaryu et al. (2022)

(textile workers), Chang et al. (2016) (pear packers), and Graff Zivin and Neidell (2012) (fruit pickers).

Even though productivity effects are small compared to other contexts, they might still

be economically relevant, given that software development is an occupation generating large

economic value. We use the average monetary value of commits and PRs opened (derived in

Section 3.3) to translate the estimated effects of PM2.5 exposure into changes in output value.
10

For a 10 µg/m
3

increase in PM2.5 the implied reduction in daily output value amounts to $2.12

per software developer. This magnitude is comparable to effects reported by Chang et al. (2016)

who find that a 10 µg/m
3

increase in PM2.5 reduces hourly output among pear packers by

$0.41, implying a damage of $3.28 for an eight-hour workday. On days with a PM2.5 shock,

output value falls by $8.40 relative to days with better air quality. As we ignore other losses,

for example, from less work on issues and reductions in task complexity in the calculation,

these estimates can be interpreted as lower bounds.

In summary, in comparison to other professions, the effect of particulate matter is mod-

erate, pointing towards an important role of worker adaption in flexible work environments.

Economically, the effect is nevertheless relevant, given the high monetary value of software.

Effect Dynamics. To explore effect dynamics, we use a “reduced form” version of our model,

regressing output quantity on four variables measuring inversion strength in city 𝑐 on day

𝑑 and each of the previous three days. Appendix Table 8 shows that for all outcomes (total

actions, commits, comments, and the indicator for any actions), same-day inversion strength

generates negative and significant effects, whereas the point estimates on the lags are mostly

close to zero and statistically not significant, except for a positive point estimate on total actions

at the third lag. Thus, in our sample, which likely comprises mostly young to middle-aged,

10
We assume a value of $112 per commit (Section 3.3). For PRs, we do not use the mean value of $354 found in

the Gitcoin data because PRs in that sample are on average larger than PRs created in our sample. Instead, we

value PRs with 2.13 × $112 = $239 given that they comprise, on average, 2.13 commits.
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Table 3: IV Estimates of the Effect of PM2.5 on Work Quality

PR Acceptance Rate Share Commits Reverted
(1) (2) (3) (4)

PM2.5 −0.00017 0.000001

(0.00009) (0.000001)

PM2.5 shock −0.0107 −0.0001

(0.0079) (0.0002)

First stage F-stat. 186 82 291 132

% change −0.03 −1.6 0.03 -4.5

Observations 153,877 312,747

Mean dep. var. 0.666 0.002

Notes: Regressor is PM2.5 in µg/m
3

in Colums (1) and (3) or a dummy as in Equation (3) in Columns (2) and (4). Covariates as in Table 2.

Regressions weighted by number of developers in city-month cell. Standard errors, clustered by city, in parentheses.

high-skilled workers, pollution’s adverse effects arise immediately and do not persist beyond

the same day.

5.2 WorkQuality

Apart from quantity, output quality is of major relevance, especially in high-skill jobs, and

might also be affected by environmental shocks. Table 3 displays 2SLS estimates for two

measures of work quality. The first is the share of PRs a user opened that later got accepted. PR

rejections suggest issues with code quality or style, indicating low work quality. The second

is the share of commits made by a user that were later reverted. Commit reversals point to

severe errors that cannot easily be corrected in further commits, i.e., major issues with the

work quality. Sample sizes are reduced, because these outcomes are only defined for city× day

observations with any PRs opened and any commits, respectively. Moreover, information on

commit reversals is from GHArchive, which is only available from 2015.

We find negative point estimates for the PR acceptance rate, implying a reduction by 0.017

percentage points or 0.03% relative to the sample mean rate for a one unit increase in PM2.5,

and a reduction by 1.07 percentage points or 1.6% on a day with a pollution shock relative

to days with better air quality. The effect is statistically significant only when using PM2.5 in

µg/m
3

as regressor. Coefficients are insignificant for the share of commits that are reverted in

both specifications. This might arise due to a lack of power to detect small impacts on this

measure of severe quality issues.

Overall, we find only very small effects of pollution exposure on output quality. This

contrasts with the results by Archsmith et al. (2018) who find quality effects that are almost

an order of magnitude larger. They show that the propensity of baseball umpires to conduct

errors increases by 2.6% in response to a 10 µg/m
3

increase in PM2.5. In the next section, we

present evidence that developers change their work patterns when exposed to high levels of
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pollution. This form of adaptation might explain why effects on output quantity are relatively

moderate and quality is almost unaffected in this flexible high-skilled setting.

5.3 Worker Adjustment

To investigate whether work patterns change in response to increases in air pollution we

consider two potential margins of adjustment: task choice and working hours.

Task Choice. We start by analyzing whether developers switch to easier tasks when exposed

to higher levels of pollution. To assess the complexity of activities related to pull requests, i.e.,

coding and code review tasks, we consider three PR characteristics: lines of code added, lines

of code deleted, and number of files changed, averaged across all PRs a developer worked on a

given day.
11

While there can be very difficult tasks that involve a lot of effort but require only

small changes in the code, we believe that these variables provide reasonable proxies of PR

complexity. Fixing a severe bug likely requires changes in different parts of the code, implying

a larger number of files changed. Results in Table 3 indicate that PRs with more lines of code

added and files changed are rewarded higher payments on Gitcoin, validating the use of these

variables as complexity metrics. Similarly, reviewing a PR is more demanding when it contains

large changes across different files.

We apply the inverse hyperbolic sine transformation to the three variables such that

coefficients approximate percentage changes. Table 4 presents the results. The sample size is

reduced as the outcomes are defined only for city× day observations with any PRs opened

or closed. An increase in PM2.5 by 1 µg/m
3

reduces the three measures of PR complexity

significantly, with effect sizes between -0.11% and -0.21% (Panel A). On days with a PM2.5

shock, we find a 3.2% reduction in the number of files changed, and a marginally significant

drop in the number of lines added by 4.1%, indicating that developers move towards less

complex tasks mostly in response to large productivity shocks on high-pollution days (Panel

B). The effect on the number of lines deleted is also negative, but small. This pattern is plausible

as tasks related to deleting code, e.g., cleaning a file or dropping a redundant part, are usually

easier to do and to review than tasks related to creating new code.

As an alternative to using the inverse hyperbolic sine transformation of the three PR

characteristics, we summarise them in a single PR complexity index. It is computed by

standardizing the mean number of lines added, of lines deleted, and of files changed per PR

and taking the average across the three standardized measures. The resulting index is then

divided by its standard deviation. Results for this index are reported in Table 10 and confirm

that developers respond to increases in pollution by switching to easier PRs.

11
These variables are based on GHArchive data, while work quantity results use GHTorrent data. GHArchive

data are only available from 2015 onward. Appendix Table 9 shows that using data on PRs from GHArchive and

GHTorrent yields very similar results for the effect of PM2.5 on the number of PRs opened or closed.

24



Table 4: IV Estimates of the Effect of PM2.5 on Task Complexity and Working Hours

Lines added Lines deleted Files changed Share Easy Time of Last
per PR per PR per PR Issue Events Action (minutes)

(1) (2) (3) (4) (5)

Panel A.
PM2.5 −0.0021 −0.0017 −0.0011 0.00005 -0.0825

(0.0008) (0.0005) (0.0003) (0.00002) (0.0355)

First stage F-stat. 200 200 200 260 195

% change -0.2 -0.2 -0.1 0.07

Panel B.
PM2.5 shock −0.0413 −0.0107 −0.0317 0.0001 -5.149

(0.0253) (0.0252) (0.0133) (0.0024) (2.499)

First stage F-stat. 87 87 87 117 67

% change -4.1 -1.1 -3.2 0.15

Observations 183,749 183,749 183,749 280,895 339,872

Notes: Panel A: Regressor is PM2.5 in µg/m
3
. Panel B: Regressor is a dummy as in Equation (3). In Columns (1) to (3), outcomes are transformed

by the inverse hyperbolic sine. Covariates: See Section 4 or Table 2. Regressions weighted by number of developers in city-month cell.

Standard errors, clustered by city, in parentheses.

Next, we analyze whether developers also focus on easier issue-related tasks. In Column (4),

the outcome is the share of issue events completed that refer to an easy issue.We find an increase

in the share in response to an increase in PM2.5 concentration, but the magnitude is very small,

and the result is not corroborated with the PM2.5 shock measure. Even though certain issue

labels provide a prominent signal of task complexity, developers do not seem to exploit this

when hit by a pollution-induced productivity shock. A potential explanation is that less than

7% of all issues are labeled as “easy” so developers might not be able to find any open issues

with such a label.

In sum, on top of the overall reduction in the number of actions completed, developers

switch towards less complex coding and review tasks when exposed to high levels of PM2.5.

Thus, the estimates of monetary effects of air pollution exposure based on the reduction in

output quantity provide a lower bound. This form of adjustment might also explain why the

magnitude of effects on output quantity is moderate in comparison to results found in other

settings, and why work quality is hardly affected.

To investigate this, we compare the effects of pollution on output between subsamples of

developers who show a strong vs. weak adjustment response. We focus on developers who

submitted or reviewed PRs on at least 100 days. For each developer, we run a separate IV

regression of the PR complexity index on PM2.5, the standard weather covariates, and time

fixed effects. We store the estimated coefficients on PM2.5, and split the sample into individuals

with above or below median effect magnitude, i.e. weak or strong switch towards easier PRs

in response to air pollution. We then run our IV regression for output quantity and quality at

the developer× day level separately on the resulting subsamples.
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Table 5: Effect Heterogeneity in Pollution Effects on Adjustment and Output

Actions PR Acceptance Rate Lines added per PR Files changed per PR
(1) (2) (3) (4)

Panel A. Strong Adjustment Response
PM2.5 -0.0082 -0.0002 -0.0080 -0.0045

(0.0018) (0.00016) (0.0022) (0.0014)

Observations 2,875,041 424,790 635,440 635,440

Mean dep. var. 5.14 0.68

Panel B. Weak Adjustment Response
PM2.5 -0.0113 -0.0004 0.0035 0.0020

(0.0044) (0.0001) (0.0028) (0.0013)

Observations 2,870,976 429,163 637,461 637,461

Mean dep. var. 5.16 0.68

Notes: Regressions are estimated at the developer × date level using two-stage least squares. In Columns (3) to (4), outcomes are transformed

by the inverse hyperbolic sine. The samples used in Panel A and Panel B are from developers with more than 100 days with any PR activity,

regressing the PR complexity index on PM2.5 and covariates separately for each developer and then grouping developers by below vs. above

median coefficient on PM2.5, i.e. strong vs. weak adjustment response. Covariates: developer, region-by-day-of-week, and region-by-year-by-

month fixed effects, bin variables for developers’ experience on GitHub as well as weather covariates as described in Section 4. Standard

errors, clustered by city, in parentheses.

The first two columns of Table 5 display estimated effects of PM2.5 on the primary measures

of work quantity (number of total actions) and quality (PR acceptance rate). Columns (3) to (4)

show the effects on the adjustment measures. By construction, we find strong reductions in

PR complexity in the strong adjustment subsample, and insignificant, smaller point estimates

in the weak adjustment subsample. Point estimates for total actions and the PR acceptance rate

are negative in both samples, but larger in absolute as well as relative terms for the developers

showing no adjustment response. These results confirm that switching to easier tasks is a form

of adjustment to pollution-induced productivity shocks among highly-skilled workers.

Working Hours. A second adjustment margin available is a change in working hours.

We start by analyzing whether developers expand or reduce evening activity in response

to pollution exposure. Column (5) in Table 4 presents the estimated effects of PM2.5 on the

timestamp of the last action performed by a developer on a given day (in minutes). We find

that an increase in PM2.5 concentration causes developers to end their work day slightly earlier,

but the effect magnitude is very small. A PM2.5 shock induces a stronger response, causing

developers to end the work day on average 5 minutes earlier than on days with better air

quality. In sum, developers do not use the evening to compensate for the productivity shock.

Subtle effects of pollution might make them feel unproductive, inducing them to end their

work activity earlier due to the lower opportunity cost of leisure. If PM2.5 exposure triggers

for example headaches or fatigue, developers might experience this as an off day and decide to

reallocate work to days when they perform better.

In many jobs, knowledge workers are flexible in when and where they want to work.

Shifting work intertemporally from low productivity days to the weekend, a period with

relatively low activity levels and thus scope for compensation (see Figure 2), might therefore be
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an important adjustment margin. To investigate this, we estimate the effect of PM2.5 exposure

during the workweek on output produced on the weekend. This analysis is conducted at the

developer×week level, using the following regression model:

𝑦weekend𝑖,𝑐,𝑤 = 𝛽PMMo−Fr
𝑐,𝑤 + 𝜇𝑖 + x′𝑖,𝑡𝜋 +w′weekend

𝑐,𝑤 𝛾𝑅(𝑐) +w′Mo−Fr
𝑐,𝑤 𝛼𝑅(𝑐) +

𝛿𝑅(𝑐)ℎ𝑐,𝑤 + 𝜇𝑅(𝑐),𝑦𝑟 (𝑤),𝑞(𝑤) + z𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑐,𝑤 𝜑 + 𝜀𝑖,𝑐,𝑤 . (4)

Here, 𝑦weekend𝑖,𝑐,𝑤 denotes the sum of actions conducted by developer 𝑖 living in city 𝑐 on the

weekend of week 𝑤 . 𝑃𝑀Mo−Fr
𝑐,𝑤 measures the number of days with a PM2.5 shock between

Monday and Friday of week 𝑤 . Due to the finding that exposure to pollution reduces output

only on the same day without adverse effects on the following days (Appendix Table 8), the

coefficient 𝛽 should pick up developers’ behavioral adjustment to a productivity shock during

the workweek, and not confound it with physiological effects.

Pollution is instrumented by average nighttime inversion strength between Monday and Fri-

day, interacted with indicators for the first-stage city groups 𝑔. To account for auto-correlation

in the instruments, we add the vector z𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑐,𝑤 to the model, which includes the instrumen-

tal variables measured on the weekend. This ensures that we do not pick up the effects of

inversion-induced changes in pollution on the weekend itself. The model further includes a

developer fixed effect 𝜇𝑖 , a region-by-year-by-quarter fixed effect, 𝜇𝑅(𝑐),𝑦𝑟 (𝑤),𝑞(𝑤) , the number

of public holidays during the workweek, ℎ𝑐,𝑤 , a vector x′𝑖,𝑡 of bin variables capturing the devel-

oper’s tenure on GitHub, and two sets of weather controls, wMo−Fr
𝑐,𝑤 and wweekend

𝑐,𝑤 , covering the

exposure period and the weekend, respectively.
12

Results in Panel A of Table 6 indicate that developers produce significantly more output

on weekends if they were exposed to unusually high levels of PM2.5 during the workweek.

One additional day with a PM2.5 shock causes an increase in total actions on the weekend by

0.046 or 1.5% of the mean. Effects are positive for both commits and comments, but significant

only for the latter, indicating an increase by 2.4% relative to the mean value. We also find

positive point estimates for the probability of conducting any action at all (Column 4), and the

PR complexity index, computed across all PRs opened or closed on the weekend (Column 5),

but they are not statistically significant.

In Panel B we repeat the same analysis, but only based on weeks with low pollution

levels on the weekend, defined as levels below the city-specific 75th percentile on both days.

We find substantially larger coefficients in this sample, which attain statistical significance

across all five outcomes. For one additional PM2.5 shock during the workweek, developers

are 0.4 percentage points more likely to conduct any work on GitHub on the weekend. The

number of total actions increases by 0.11, driven by both more commits and more comments,

12
The vectors wMo−Fr

𝑐,𝑤 and wweekend
𝑐,𝑤 contain the number of days with wildfire smoke exposure, third-order

polynomials in average precipitation, relative humidity, and wind speed during the respective period. The vector

wMo−Fr
𝑐,𝑤 further includes variables counting the number of days on which daily mean temperature falls into the

temperature bins described above. The vector wweekend
𝑐,𝑤 includes a third-order polynomial in average temperature.
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Table 6: Effect of PM2.5 during Workweek on Weekend Work (IV Estimates)

Actions Commits Comments Any Actions PR Complexity Index
(1) (2) (3) (4) (5)

Panel A. Full sample
Days with PM2.5 shock 0.0457 0.0094 0.0176 0.0011 0.0172

(0.0269) (0.0143) (0.0087) (0.0012) (0.0109)

First stage F-stat. 73.5 73.5 73.5 64.5

Observations 2,273,906 2,273,906 2,273,906 2,273,906 207,967

% change 1.5 0.6 2.4 0.3 1.7

Panel B. Low PMWeekends only
Days with PM2.5 shock 0.1138 0.0437 0.0361 0.0038 0.0288

(0.0501) (0.0242) (0.0158) (0.0017) (0.0122)

First stage F-stat. 51.0 51.0 51.0 51.0 58.7

Observations 1,518,897 1,518,897 1,518,897 1,518,897 138,933

% change 3.9 2.6 4.9 1.1 2.8

Notes: 2SLS regressions are estimated at the developer × week level. The regressor is the number of days with a PM2.5 shock between

Monday and Friday. Panel A: Models estimated on the full sample. Panel B: Only weeks with weekends with PM2.5 below the city-specific

75th percentile are included. Covariates: Developer and region-by-year-by-quarter fixed effects, developer experience bins, number of public

holidays during the workweek, leads of the instrumental variables for the weekend, and flexible weather controls for both the weekend and

the workweek (see Equation 4). Standard errors, clustered by city, in parentheses.

and the complexity of PRs developers work on rises by 2.9% of a standard deviation. These

findings indicate that developers use low-pollution weekends to compensate for the reduction

in work activity and the shift towards easier tasks on high-pollution work days. In other words,

developers reallocate work from low to high productivity periods, i.e., from workdays marked

by a PM2.5 shock towards weekends without air pollution-induced productivity shocks.

To put these effects into perspective, we compare them to the reductions in same-day

output due to a PM2.5 shock (Table 2). On average, additional work on the weekend makes up

for 39% of the reduction in total actions due to a PM2.5 shock. On low-pollution weekends,

developers even compensate for 58% and 97% of the reduction in commits and total actions,

respectively.

To check that the estimates in Table 6 indeed reflect a behavioral response of developers

to pollution-induced productivity shocks, we conduct a falsification test. We shift both the

weekend and the exposure period forward by two days. The placebo weekend comprises

Monday and Tuesday and the placebo exposure period ranges from Wednesday to Sunday

of the week before. Since activity levels are low on weekends, productivity shocks during

the placebo exposure period, which partially falls on the weekend, should not induce strong

compensation during the following week. Moreover, activity is already high on Monday

and Tuesday, such that there is not much scope for additional work. Hence, we expect no

significant effects of PM2.5 exposure. Appendix Table 11 presents the results which confirm

this hypothesis. Effects are neither significant in the full sample, nor when considering only

placebo weekends with low pollution levels.
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In sum, developers work more on weekends to catch up on work not completed due to

pollution-induced productivity declines during the workweek. This chance to compensate

might allow them to end work early on high-pollution work days. Such a reallocation option

could thus also contribute to the absence of effects on work quality in this setting. If developers

can end work when their health or cognitive capacity deteriorates and they face an increased

risk of committing errors, this will mitigate the impacts of pollution on work quality. At the

same time, sacrificing leisure on the weekend, when it is likely most valuable, implies a welfare

cost and potentially adverse effects on the work-life balance.

Overall, worker adaptation through changes in task choice and working hours, likely plays

an important role in alleviating the effects of PM2.5 on output.

6 Heterogeneity and Further Results

Non-Linearity. Exploiting the large variation in air quality in our sample, we investigate

whether the effect of pollution on output varies across the range of PM2.5 concentrations. To

analyze the shape of the dose-response function, we replace PM𝑐,𝑑 in equation (1) with a series

of dummy variables indicating whether PM2.5 concentration falls into a specific bin. Since we

do not have enough instruments for running 2SLS, we opt for a more conservative specification

with stricter fixed effects for region× date and city×month. These absorb (i) region-wide

shocks to developer output on a given date that might be correlated with PM2.5 concentration

and (ii) seasonal fluctuations in activity and air quality which are allowed to vary across cities.

OLS results from this model with either PM2.5 in µg/m
3
, or the indicator for a PM2.5 shock as

regressors are presented Columns 4 to 6 of Table 7. Given the finding that the OLS results

underestimate the true effects, the results can be interpreted as lower bounds.

Figure 8 displays the estimated impact on total actions when moving from a PM2.5 concen-

tration between 7 and 15 µg/m
3

to the respective bin. The baseline bin is chosen such that for

each city some observations fall into this range. We find significant reduction in the number

of daily actions starting at a level of approximately 70 µg/m
3
, but no significant differences

for concentrations between the reference bin and 60 µg/m
3
. Moving to PM2.5 levels below

5 µg/m
3

increases output (point estimate = 0.030, p-value = 0.029). This implies that even in

cities with low to moderate levels of PM2.5, further improvements in air quality will generate

positive effects on worker productivity.

In Appendix Figure 4 we zoom in on the different parts of the function, by grouping the cities

into terciles based on average pollution concentration. The most pronounced negative effects

of increased pollution on total actions occur in the bottom tercile (mean PM2.5 concentration

below 8.7 µg/m
3
), even at levels below the current regulatory threshold by the U.S. EPA. Given

that the OLS estimates likely underestimate the true effects of PM2.5 exposure, the results

imply relevant economic benefits from complying with the stricter WHO guideline for PM2.5.

We find no adverse effects of increases in PM2.5 in the medium and upper tercile, except for
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Figure 8: Non-Linear Effects of PM2.5 on Output Quantity

Notes: OLS estimates from regression of total actions on different bins of PM2.5 concentrations. Covariates: Weather and holiday controls as

in Section 4, region-by-date and city-by-month fixed effects. X-axis: Average PM2.5 concentration in each bin in µg/m
3
. Shaded areas: 95%

and 90% confidence intervals.

very high concentrations above 40 µg/m
3
. This could be attributed to individuals in cities with

higher pollution adopting more avoidance strategies and employing protective measures like

air purifiers, which help maintain stable indoor pollution levels except at the most extreme

ambient air pollution levels.

Effect Heterogeneity. Next, we analyze heterogeneity in the effect of fine particulate matter

by location characteristics to shed light on the distribution of air pollution damages and the

potential mechanisms driving the adverse effects on output. We begin by examining the

variation in PM2.5 effects between locations with different income levels. We group the sample

cities based on whether their GDP per capita in 2014 was above or below the region-specific
median.

13
This approach ensures that our income-based analysis is not confounded by other

regional differences correlating with income. The above median GDP per capita subsample
comprises the cities with relatively high income from each of the seven geographic regions

𝑅, but includes some cities with lower income than the below median GDP per capita sample.
Results are reported in Table 7. We find identical absolute effects of a one unit increase in PM2.5

concentration on commits and the probability of conducting any action. Relative to the sample

mean, effects are slightly larger in the low-GDP sample. For the number of comments and

total actions, we find larger effects in low-income cities, in absolute and relative terms. In the

high-income sample, effects are not statistically significant. These results align with previous

findings that lower-income areas tend to suffer more harm from similar environmental hazards

(Colmer et al., 2021; Hsiang et al., 2019).

13
The main source for local GDP per capita is the OECD metropolitan area database. We assign to each city the

value for its respective metro area. Data for cities in non-OECD countries come from national statistical agencies,

the OECD regional statistics database, or the World Bank. All values are adjusted for purchasing power parity.
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Table 7: Heterogeneity: GDP per capita (IV Estimates)

Above Median GDP per capita Below Median GDP per capita
Actions Commits Comments Any Actions Commits Comments Any

Action Action
(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 -0.0018 -0.0014 -0.0002 -0.0002 -0.0036 -0.0014 -0.0012 -0.0002

(0.0012) (0.0005) (0.0006) (0.0001) (0.0008) (0.0005) (0.0002) (.00005)

Observations 197,218 200,059

First stage F-st. 1050 251

Mean PM2.5 14.0 17.9

Mean dep. var. 2.76 1.29 0.92 0.36 2.48 1.20 0.80 0.35

Notes: Regressor is PM2.5 in µg/m
3
. Sub-samples based on a city’s 2014 GDP per capita compared to the median in its geographic region.

Data sources: OECD, World Bank, and national statistical offices. Covariates: See Section 4 or Table 2. Regressions weighted by number of

developers in city-month cell. Standard errors, clustered by city, in parentheses.

To assess the potential role of avoidance behavior, we investigate how the effect of PM2.5

differs between regions with low and high awareness of air pollution as a significant issue.

We use data from the 2020 Pew Research Center International Science Survey to derive a

country-wide measure of awareness, namely the share of respondents stating that air pollution

is a big problem in their country. 167 of our sample cities in 18 countries are covered by the

survey data and we split them into three groups with low, intermediate, and high awareness.
14

Appendix Table 12 presents results from regressions run separately for the three subsamples.

In the low awareness group the effect size is twice as large as in the full sample. This may

be attributed to lower ownership and utilization of protective devices like air purifiers. Point

estimates in the high and intermediate awareness groups are of similar sizes as in the full

sample. This pattern suggests that the reduction in output is not due to avoidance behavior,

e.g., working from home on high-pollution days, as in such a case we would expect to find

monotonically increasing effect magnitude in awareness levels. Given that average pollution

concentration does not vary systematically with the level of awareness, nonlinear effects are

unlikely to drive the differences.

Lastly, we explore heterogeneity based on the age of the local building stock. Effective

exposure to particulate matter is likely lower for individuals in modern buildings with low

penetration rates than for those in older, lower-quality buildings given the same outdoor

concentration. We use data on the construction period of residential dwellings as a proxy for

building stock quality, covering 170 sample cities.
15

We categorize cities into two groups based

on the share of dwellings built before 1970, indicating relatively old buildings. We find that

the negative effect of PM2.5 on total actions is driven by the sample with a higher share of old

dwellings, i.e. the cities with likely higher effective exposure (Panel B of Appendix Table 12).

14
US cities form the intermediate awareness sample, with 63% deeming air pollution a big problem. Countries

where a larger (smaller) share of respondents holds this view, are assigned to the high (low) awareness sample.

15
The data are collected from the American Community Survey for metropolitan areas, the EU Building Stock

Observatory (country-level), the Federal Statistical Office of Switzerland (canton-level), the Statistics Bureau of

Japan (prefecture-level), Statistics Canada (province-level), and Statistics Norway (municipality-level).
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Table 8: Analysis at the Monthly Level (IV Estimates)

Actions Commits Comments Follower Growth
(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 -0.131 -0.059 -0.040 -0.00004

(0.027) (0.021) (0.008) (0.00002)

PM2.5 shock -3.980 -1.812 -1.673 -0.0022

(1.961) (0.9756) (0.9226) (0.0007)

First stage F-stat. 63 26 63 26 63 26 65 26

Observations 529,682 529,682 529,682 511,361

Mean dep. var. 81.4 38.5 26.9 0.0073

Notes: The regressor is average monthly PM2.5 in µg/m
3

(odd-numbered columns), or a dummy indicating that monthly PM2.5 exceeds the

city-specific mean by at least one city-specific standard deviation (even-numbered columns). Covariates: Developer and region-by-year-

by-month fixed effects, bins for developer’s experience on GitHub, third-order polynomials in average monthly temperature, precipitation,

relative humidity, and wind speed, number of holidays and days with heavy wildfire smoke. Effects of weather controls and holidays can vary

across regions. Regressions in Columns (7)-(8) also control for a second-order polynomial of the number of followers at the start of the month.

Standard errors, clustered by city, in parentheses.

This suggests that the main results are attributable to physiological responses to air pollution,

rather than behavioral changes or avoidance behavior.

Monthly Level. Next, we quantify the effect of monthly PM2.5 on monthly output and on

the growth rate of the number of the developer’s followers as a summary measure for the

quantity, quality, and relevance of their work on GitHub. With this, we aim to analyze pollution

effects net of short-run compensation responses and to investigate whether we find evidence

for more long-run consequences of pollution exposure proxied by follower growth. We run

2SLS regressions at the developer×month level, again using two distinct regressors, average

monthly PM2.5 concentration in µg/m
3
, or an indicator that takes value one if this concentration

exceeds the city-specific mean by at least one city-specific standard deviation. We instrument

these variables with average monthly inversion strength, interacted with indicators for the 25

city-groups 𝑔.

Table 8 shows that a 1 µg/m
3

increase in monthly PM2.5 reduces monthly actions by 0.13,

0.16% relative to the mean. The implied reduction in daily actions is 0.0043, and thus slightly

larger than the effect found in the analysis at the daily level (0.0030). Again, this effect is

driven by reductions in both commits and comments. PM2.5 also reduces follower growth

by 0.5% relative to the mean. In line with our results at the daily level, we see that months

with unusually high pollution levels largely drive the effects, reducing the output measures

by 4.9% to 6.2%, and the growth rate of the number of followers by 30%, relative to months

with better air quality. In sum, air pollution negatively affects developers’ output also over

more aggregated periods. It even hinders the growth of reputation in the tech community,

potentially impacting developers’ career prospects.

Robustness. Table 13 shows that our main results for work quantity, work time, and task

choice are robust to different specifications of the first stage. These changes include replacing

inversion strength, Δ𝑇𝑐,𝑑 , by an inversion indicator, 1{Δ𝑇𝑐,𝑑 > 0}, as well as varying the number
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of city-groups 𝑔 across which the effects of inversion strength can differ in the first stage to 15

or 50 (baseline specifications uses 25 groups).

In Table 14, we test alternative functional forms in the second stage. When we apply the

inverse hyperbolic sine transformation to our measures of work output, the direction and

statistical significance of the baseline results persist, but this specification implies somewhat

smaller effect magnitudes. Using PM2.5 in logs as regressor yields the same pattern for second-

stage effects on work quantity, time of last action, and task complexity as the baseline model.

We can also replicate our results with an alternative, policy-based indicator for unusually

high-pollution days which takes value one on when PM2.5 exceeds the relevant air quality

standard in the respective country.

Lastly, we demonstrate that the results are overall robust to varying the included sets of

fixed effects, absorbing common shocks at different geographic and temporal levels, as well as

varying the included weather controls (Appendix Figures 5 to 8).

7 Conclusion

How do environmental conditions affect workers in jobs that form the backbone of the modern

knowledge economy? In our paper, we provide insights on this question, which is highly

relevant as such jobs are expected to become even more widespread as digitalization and

automation continue to change the world of work.

Using rich data on GitHub activities, we show that air pollution reduces daily output in a

global sample of software developers. This decline is mostly driven by reductions in individual

coding activity and work on new tasks, while collaborative activity in response to others’

work is less affected. Our estimates are at the lower end of air pollution effects found in less

flexible and less collaborative occupations. Moreover, we find only minor deteriorations in

output quality. Due to the high value generated by software developers, the implied monetary

loss is nevertheless economically relevant and comparable to findings for manual occupations.

Developers exploit the flexibility of their work setting to adapt to environmental shocks. When

PM2.5 increases, they shift to less complex tasks and reallocate work from high-pollution,

low-productivity workdays to low-pollution, high-productivity weekends. These adjustments

likely help to alleviate effects on output quantity and quality, but they also imply additional

welfare cost of air pollution not captured by changes in output due to forgone leisure time on

weekends and negative impacts on work-life balance.

While we use data on software developers using GitHub as part of their formal work,

we believe that the findings generalize to other occupations that offer flexible schedules and

discretion in task choice and require similar skills like problem-solving, attention to detail,

programming, and teamwork. This applies to many knowledge workers, including business

analysts or researchers. Furthermore, since our sample covers 47 countries, the estimates in

this study are not specific to a certain firm or country context.
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Based on this, we derive estimates of the monetary benefits from reducing PM2.5 concen-

tration permanently by one µg/m
3

in terms of productivity gains among knowledge workers.

Extrapolating to all US workers in the occupation group ‘Computer and Mathematical Workers’

and all ICT professionals in the European Union suggests annual benefits of $360m (US) and

$600m (EU), respectively.
16

Hence, our findings have important policy implications. When

setting air pollution standards, regulators may want to factor in the growing evidence on

the economic benefits of pollution reductions through productivity gains. Importantly, we

find adverse effects of PM2.5 on output even below the current regulatory standards in the

European Union and the US. While we find slightly smaller marginal effects in highly polluted

locations, the substantially greater concentrations of PM2.5 in developing countries like In-

dia and Bangladesh, compared to the US, could pose a challenge for growing their software

industries.

Our findings on how software developers adjust work patterns also have interesting impli-

cations for the organization of work within firms: Highlighting the difficulty of certain tasks

and granting flexibility in working hours might help workers to better adapt to idiosyncratic

productivity shocks and mitigate the total impact on team or firm performance.
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Appendix (For Online Publication)

A Additional Tables

Table 1: Characteristics of High-Skill Occupations and Software Development

Freedom to Make Structured versus Work With Work

Decisions Unstructured Work Group or Team

All high-skill Software All high-skill Software All high-skill Software

occupations developers occupations develop. occupations develop.

1 0.4 0 0.6 0 1.79 0

2 2.6 3.1 2.3 2.4 4.4 5.9

3 10.5 29.1 11.3 28.1 11.0 2.7

4 35.6 38.2 39.8 45.0 30.5 9.2

5 50.9 29.6 46.0 24.6 52.4 82.3

Notes: Based on data from O*NET Database Version 25.0. Work Contexts Table. All high-skill occupations refers to occupations in Job Zones 4

and 5. Software developers refers to occupation 15-1132.00 (“Software Developers, Applications”). Categories: 1 = not important at all/no

freedom; 2 = Fairly important/very little freedom; 3 = Important/Limited freedom; 4= Very Important/Some freedom; 5 = Extremely important

/ A lot of freedom

Table 2: Labels Indicating Easy Issues

good first issues good first bug good-first

documentation polish cleanup

simple easy small

trivial minor help wanted
junior job newcomer starter

beginner newbie novice

low hanging low-hanging

Notes: If a label contains any of these terms, the issue is classified as “easy”. Bolt text indicates GitHub default labels.
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Table 3: Description of Outcome Variables

Domain Concept Variable Details

OutputQuantity Total output Actions Sum of number of commits,

quantity comments on issues, PRs and commits,

PRs opened, PRs closed, issues opened,

closed and reopened

Coding activity Commits Number of commits

Interactive activity Comments Sum of number of comments

written on issues, PRs and commits

OutputQuality Proposed code changes PR Acceptance Rate
PRs opened that got merged

all PRs opened

that get accepted

Deficient commits Share commits reverted
Commits that got reverted

all commits

Task choice Average PR complexity Lines added per PR Average number of lines of code

added in PRs opened or closed

Files changed per PR Average number of code files

changed in PRs opened or closed

Lines deleted per PR Average number of lines of code

deleted in PRs opened or closed

Easy tasks among Share easy issue (#easy issues opened + #easy issues closed +

issue events events #comments written on easy issues)/

(#issues opened + #issues closed +

#comments written on issues)

Working hours Evening activity Time last action Minute of final action of the day

Weekend Activity Actions Number of total actions conducted

on the weekend

Notes: The Table displays information on the outcome variables we use, how they are constructed, and what they measure.
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Table 4: Sources of Air Quality Data

Geographic Area Data Source

United States U.S. Environmental Protection Agency (EPA)

Canada Canadian National Air Pollution Surveillance (NAPS) Program

Mexico City Gobierno de la Ciudad de México

Europe European Environment Agency (EEA)

Russia, Ukraine, Copernicus Atmosphere Monitoring Service (CAMS)

Belarus, Turkey,

Israel

China National Environmental Monitoring Centre

Chennai, Mumbai, US Embassies (AirNow.gov)

New Delhi, Dhaka,

Hyderabad

Bengaluru Central Pollution Control Board (CPCB)

Japan National Institute for Environmental Studies

Hong Kong Hong Kong Environmental Protection Department

Singapore National Environment Agency

South Korea Air Korea

Taiwan Environmental Protection Administration

Australia New South Wales Department of Planning and Environment

Victorian Government open data portal

Queensland Government open data portal

South Australian Government Data Directory

New Zealand Stats NZ Tatauranga Aotearoa

Notes: Data sources for data on PM2.5. Airbase, the EEA’s database on air pollution, contains monitor data for 33 countries, including all EU

members, as well as further EEA member and cooperating countries, e.g., Switzerland, Norway and Serbia.

Table 5: Developer-by-date observations and inversion frequency by geographic regions 𝑅

Region 𝑅 Observations Share of Total Inversion Frequency (%)

Observations (%)

Oceania 502,942 3.1 35

Northern America 7,374,420 45.6 50

Northern Europe 1,809,795 11.2 35

Western Europe 2,297,385 14.2 53

Southern Europe 474,070 2.9 51

Eastern Europe 1,024,998 6.3 57

Asia 2,691,543 16.6 30

Notes: The table shows the distribution of observations in the developer × date panel described in section 3.2 across geographic regions 𝑅 on

the left. On the right, it shows the share of all city × date observations with a nighttime inversion by geographic region 𝑅.
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Table 6: Effect of PM2.5 on Quantity of Issue and Pull Request Actions

PRs closed PRs opened Issues closed Issues opened
(1) (2) (3) (4)

Panel A.
PM2.5 -0.00013 -0.00016 -0.00009 -0.00023

(0.00005) (0.00004) (0.00004) (0.00004)

First stage F-stat. 160 160 160 160

% change -0.08 -0.11 -0.08 -0.23

Panel B.
PM2.5 shock -0.0037 -0.0066 0.0051 -0.0077

(0.0064) (0.0058) (0.0042) (0.0039)

First stage F-stat. 76 76 76 76

% change -2.3 -4.4 4.6 -7.7

Mean dep. var. 0.16 0.15 0.12 0.10

Observations 397,277 397,277 397,277 397,277

Notes: 2SLS estimates of the parameter 𝛽 in Equation (1). The regressor of interest is PM2.5 concentration in µg/m
3

(Panel A) or a binary PM2.5

shock variable as in Equation (3) (Panel B). Covariates include fixed effects and flexible weather controls as described in Table 2. Regressions

are weighted by the number of active workers in a city-month cell. Standard errors clustered at the city level are reported in parentheses.

Table 7: OLS Results for Work Quantity

Actions Commits Comments Actions Commits Comments
(1) (2) (3) (4) (5) (6)

Panel A.
PM2.5 −0.00047 −0.00019 −0.00017 −0.00034 −0.00014 −0.00014

(0.00013) (0.00008) (0.00007) (0.00016) (0.00011) (0.00004)

Panel B.
PM2.5 shock −0.0068 −0.0060 −0.0004 −0.0083 −0.0063 −0.0013

(0.0105) (0.0051) (0.0038) (0.0109) (0.0053) (0.0041)

Observations 397,277 397,277 397,277 397,277 397,277 397,277

City FE ✓ ✓ ✓
Region×Day-of-Week FE ✓ ✓ ✓
Region×Year-Month FE ✓ ✓ ✓
Region×Date FE ✓ ✓ ✓
City×Month FE ✓ ✓ ✓

Notes: OLS estimates of the parameter 𝛽 in Equation (1). The regressor of interest is PM2.5 concentration in µg/m
3

(Panel A) or a binary

PM2.5 shock variable as in Equation (3) (Panel B). Covariates: flexible weather controls as described in Section 4. Included fixed effects are

displayed in the bottom part of the table. Regressions are weighted by the number of active workers in a city-month cell. Standard errors

clustered at the city level are reported in parentheses.
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Table 8: Lagged Effects of Inversion Strength on Output Quantity

Actions Commits Comments Any Actions
(1) (2) (3) (4)

Invstrength𝑐,𝑑 −0.0040 −0.0018 −0.0013 −0.0002

(0.0010) (0.0005) (0.0006) (0.0001)

Invstrength𝑐,𝑑−1
0.0003 0.0001 −0.0001 0.00004

(0.0013) (0.0006) (0.0006) (0.0001)

Invstrength𝑐,𝑑−2
0.0003 0.00002 0.0002 0.0001

(0.0010) (0.0004) (0.0005) (0.0001)

Invstrength𝑐,𝑑−3
0.0018 0.0007 0.0005 0.00004

(0.0011) (0.0006) (0.0004) (0.0001)

Observations 417,116 417,116 417,116 417,116

‘First stage effect’ of Invstrength𝑐,𝑑 on PM2.5 0.869 (0.114)

Notes: OLS estimates of the outcomes displayed at the top on inversion strength in degrees Celsius on the same day, as well as three lags.

Covariates: fixed effects as described in Table 2 and third order-polynomials in mean daily temperature, precipitation, wind speed and relative

humidity as well as three lags of the weather controls. Effects of the weather controls can vary across world regions 𝑅. At the bottom of

the table, the coefficient from a regression of PM2.5 in µg/m
3

on inversion strength (with fixed effects and weather controls) is presented.

Regressions are weighted by the number of active workers in a city-month cell. Standard errors clustered at the city level are reported in

parentheses.

Table 9: Effect of PM2.5 on PRs opened and closed with GHArchive and GHTorrent data

PRs opened (GHA) PRs closed (GHA) PRs opened (GHT) PRs closed (GHT)
(1) (2) (3) (4)

PM2.5 -0.0002 -0.0001 -0.0002 -0.0001

(0.00003) (0.00005) (0.00004) (0.00005)

[<0.00001] [0.008] [<0.00001] [0.018]

First stage F-stat. 165 165 165 165

Observations 337,008 337,008 337,008 337,008

Notes: 2SLS estimates of the parameter 𝛽 in equation (1), where the outcome is the number of pull requests (PRs) opened or closed, respectively.

This is measured in GHArchive data in columns (1) to (2) and GHTorrent data in column (3) to (4). The regressor of interest is PM2.5

concentration in µ𝑔/𝑚3
. Covariates are as described in Table 2. The sample period is 2015 to May 2019. Regressions are weighted by the

number of active workers in a city- month cell. Standard errors clustered at the city level are reported in parentheses. P-values are reported

in brackets.
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Table 10: Pull Request Complexity Index

PR Complexity

(1) (2)

PM2.5 (in µg/m
3
) -0.0003

(0.0002)

PM2.5 shock -0.0273

(0.0158)

Observations 1,750,825 1,750,825

First stage F-stat. 215 68

Notes: 2SLS estimates of the effect of PM2.5 on the complexity of PRs a developer opened or closed on the current day, estimated at the

developer × day level. The dependent variable is a PR complexity index that is computed as the average of the mean number of new lines of

code added, number of lines of code deleted and number of code files changed per PR, after standardizing each variable. The complexity index

is divided by its standard deviation. Covariates: flexible weather controls as described in Table 2, as well as developer, region-by-day-of-week,

and region-by-year-by-month fixed effects. Regressions are based on GHArchive data. The sample period is 2015 to May 2019. Standard

errors clustered at the city level are reported in parentheses.

Table 11: Placebo Test: Effect of PM2.5 Wednesday to Sunday on Work Activity Monday to

Tuesday

Actions Commits Comments Any action
(1) (2) (3) (4)

Panel A: Full Sample
Days with PM2.5 shocks 0.0237 0.0033 0.0010 0.0003

(0.0499) (0.0244) (0.0207) (0.0018)

Observations 2,241,316 2,241,316 2,241,316 2,241,316

Panel B: low PMWeekends only
Days with PM2.5 shocks -0.0311 -0.0041 -0.0373 -0.0035

(0.0682) (0.0343) (0.0296) (0.0029)

Observations 1,505,973 1,505,973 1,505,973 1,505,973

Notes: 2SLS estimates of the parameter 𝛽 in a placebo version of equation 4. Outcomes are the sum of all actions, commits and comments

made between Monday and Tuesday, the placebo weekend. The regressor of interest is the number of days characterized by a PM2.5 shock

during the placebo workweek, i.e. the previous five days. Regressions control for developer and region-by-year-by-quarter fixed effects,

developer experience bins, the number of public holidays during the workweek, and the leads of the instrumental variables for the placebo

weekend. Further covariates are flexible weather controls for the placebo exposure period and the placebo weekend. Standard errors clustered

at the city level are reported in parentheses.
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Table 12: Heterogeneity: Awareness and Building Stock Age

Dependent Variable: Actions
Panel A. Awareness

All High Intermediate Low
(1) (2) (3) (4)

PM2.5 -0.0033 -0.0029 -0.0033 -0.0080

(0.0007) (0.0006) (0.0059) (0.0019)

Observations 307,313 84,079 141,036 82,198

First stage F-stat. 259 357 161 555

Share Air Pollution is Big Problem 65.0% 79.7% 63.1% 52.8%

Mean PM2.5 12.0 19.3 8.3 11.0

Mean dep. var. 2.8 2.5 3.0 2.7

Panel B. Building Stock Age
All Above Median Below Median
(1) (2) (3)

PM2.5 -0.0046 -0.0079 -0.0023

(0.0026) (0.0023) (0.0044)

Observations 309,966 150,236 159,730

First stage F-stat. 161 184 265

Share modern buildings 27% 17% 36%

Share old buildings 46% 59% 33%

Mean PM2.5 10.3 10.7 9.7

Mean dep. var. 2.93 2.87 3.00

Notes: In Panel A, the sample used in Column (1) includes all 167 cities covered by the Pew Research Center International Science Survey.

Results in Columns (2) to (4) are estimated on subsamples formed based on country-level awareness of air pollution, measured by the share of

respondents stating that air pollution is a big problem in the Pew Survey. In Panel B, the sample used in Column (1) includes all 170 cities

covered by data on building stock age. Results in Columns (2) to (3) are estimated on subsamples formed based on the share of dwellings built

before 1970, which are defined as old buildings. Modern buildings are those built after 1990. Regressions weighted by number of developers

in city-month cell. Standard errors, clustered by city, in parentheses.
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Table 13: Robustness: First Stage Specification

Any Time of Lines added Files changed
Actions Commits Comments Action Last Action per PR per PR

(1) (2) (3) (4) (5) (6) (7)

Panel A.
PM2.5 -0.0044 -0.0023 -0.0013 -0.0003 -0.1490 -0.0028 -0.0014

(0.0006) (0.0004) (0.0002) (0.00006) (0.036) (0.0013) (0.0004)

First stage F-stat. 83 83 83 83 84 146 146

Panel B.
PM2.5 shock -0.1358 -0.1018 -0.0365 -0.0091 -3.199 -0.0242 -0.0324

(0.0744) (0.0353) (0.0328) (0.0056) (3.503) (0.0281) (0.0160)

First stage F-stat. 49 49 49 49 50 59 59

IV-Specification Inversion Indicator × 25 city groups

Observations 397,277 397,277 397,277 397,277 339,872 183,749 183,749

Panel C.
PM2.5 -0.0029 -0.0015 -0.0008 -0.0002 -0.0886 -0.0021 -0.0011

(0.0006) (0.0004) (0.0002) (0.00004) (0.0374) (0.0008) (0.0003)

First stage F-stat. 750 750 750 750 701 1040 1040

Panel D.
PM2.5 shock -0.1026 -0.0682 -0.0247 -0.0096 -3.998 -0.0337 -0.0284

(0.0688) (0.0300) (0.0303) (0.0048) (2.491) (0.0239) (0.0118)

First stage F-stat. 198 198 198 198 144 167 167

IV-Specification Inversion Strength × 50 city groups

Observations 397,277 397,277 397,277 397,277 339,872 183,749 183,749

Panel E.
PM2.5 -0.0031 -0.0016 -0.0009 -0.0002 -0.0896 -0.0022 -0.0011

(0.0006) (0.0004) (0.0002) (4.3 × 10
−5

) (0.0379) (0.0007) (0.0003)

First stage F-stat. 153 153 153 153 203 373 373

Panel F.
PM2.5 shock -0.1298 -0.0761 -0.0393 -0.0115 -5.110 -0.0410 -0.0349

(0.0658) (0.0305) (0.0291) (0.0048) (2.547) (0.0264) (0.0144)

First stage F-stat. 86 86 86 86 79 80 80

IV-Specification Inversion Strength × 15 city groups

Observations 397,277 397,277 397,277 397,277 339,872 183,749 183,749

Notes: 2SLS estimates of the parameter 𝛽 in Equation (1). In Panels A, C and E, the regressor of interest is PM2.5 concentration in µg/𝑚3
. In

Panel B, D and F, an indicator for a PM2.5 shock is used instead. Relative to specifications underlying results in Table 2, the first stage model

is changed: In Panels A and B, instruments are the interactions of a dummy variable for a thermal inversion occurring with indicators for

25 distinct city groups 𝑔. In Panels C to F, the first stage specification is as in Equation (2), but we form 50 city-groups 𝑔 (C and D) or 15

city-groups 𝑔 (E and F) instead of 25 groups (baseline). Covariates as described in Table 2. Regressions are weighted by the number of active

workers in a city during the current month. Standard errors clustered at the city level are reported in parentheses.

45



Table 14: Robustness: Second Stage Specification

Any Time of Lines added Files changed
Actions Commits Comments Action Last Action per PR per PR

(1) (2) (3) (4) (5) (6) (7)

Panel A. Inv. Hyperbolic Sine Transformation
PM2.5 −0.0006 −0.0005 −0.0003

(0.0001) (0.0001) (0.0001)

First stage F-stat. 160 160 160

Panel B. Inv. Hyperbolic Sine Transformation
PM2.5 shock −0.0250 −0.0185 −0.0106

(0.0128) (0.0085) (0.0078)

First stage F-stat. 76 76 76

Panel C. log(PM)
𝑙𝑜𝑔 (PM2.5 ) −0.0667 −0.0393 −0.0184 −0.0049 −2.255 −0.0264 −0.0161

(0.0323) (0.0133) (0.0155) (0.0024) (0.8948) (0.0142) (0.0067)

First stage F-stat. 145 145 145 145 131 129 129

Observations 397,277 397,277 397,277 397,277 339,872 183,749 183,749

Panel D. PM2.5 exceeding National Standard
PM2.5 > Standard −0.1133 −0.0608 −0.0422 −0.0092 −4.536 −0.0379 −0.0244

(0.0605) (0.0281) (0.0280) (0.0043) (2.0320) (0.0230) (0.0117)

First stage F-stat. 81 81 81 81 75 78 78

Observations 355,925 355,925 355,925 355,925 303,211 162,740 162,740

Notes: 2SLS estimates of the parameter 𝛽 in Equation (1). In Panel A, the regressor of interest is PM2.5 concentration measured in µg/𝑚3
.

In Panel B, an indicator for a PM2.5 shock is used instead (as defined in Equation 3). In Panel C, the regressor is the logarithm of PM2.5

concentration. In Panel D, the regressor is a binary indicator for PM2.5 concentration violating the national air quality standard. Inverse

hyperbolic sine transformations are applied to outcomes in Panels A and B. The first stage specification is given in Equation (2). Covariates as

described in Table 2. Regressions are weighted by the number of active workers in a city during the current month. Standard errors clustered

at the city level are reported in parentheses.
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B Additional Figures

Figure 1: Skill Requirements in High-Skill Occupations and Software Development

Notes: Based on data from O*NET Database Version 25.0. Skills Table. Light blue bars reflect average importance of the respective skill across

all high-skill occupations, i.e. occupations in Job Zones 4 and 5. Dark blue bars reflect the importance of the respective skill among software

developers, i.e. occupation 15-1132.00 (“Software Developers, Applications”).
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Figure 2: Illustration of first stage city groups 𝑔. Circles represent sample cities. Color and

number of the city markers refer to the group 𝑔 we assign a city to for the first stage regression

(see Section 4 and Equation (2)).
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Figure 3: First stage for all 25 city groups. Binned scatter plots of residualized PM2.5 concen-

tration against inversion strength for each first stage city group. Residuals are generated by

taking out weather controls and fixed effects as described in Equation 2. Blue lines show a

linear fit. Plot titles denote one city from the respective group.
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Figure 4: Non-linear effects of PM2.5 on Work Quantity across subsamples based on average

PM2.5

Notes: The figure depicts point estimates on different bins of PM2.5 concentrations from OLS regressions of total actions on indicators for

each bin for three distinct samples. Cities are assigned to subsamples based on average PM2.5 concentration. Covariates: Weather and holiday

controls as in Equation 1, region × date and city × month fixed effects. X-axis: Average PM2.5 concentration in each bin in µg/m
3
. Error bars

indicate 95%- and 90%-confidence intervals.
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Figure 5: Robustness to Changes in Fixed Effects (Output Quantity)

Notes: IV point estimates of the parameter 𝛽 in Equation (1), along with 95% confidence intervals. Dependent variables are denoted at the top

of each plot. Left side: regressor of interest is PM2.5 concentration in µg/𝑚3
. Right side: regressor of interest is an indicator for a PM2.5 shock.

Relative to specifications underlying results in Table 2, we change the included fixed effects, as stated in the legend at the top. All regressions

include control variables as described in Table 2 and are weighted by the number of active workers in a city during the current month. First

Stage F-Statistics range from 67 to 207.

51



Figure 6: Robustness to Changes in Weather Controls (Output Quantity)

Notes: IV point estimates of the parameter 𝛽 in Equation (1), along with 95% confidence intervals. Dependent variables are denoted at the top

of each plot. Left side: regressor of interest is PM2.5 concentration in µg/𝑚3
. Right side: regressor of interest is an indicator for a PM2.5 shock.

Relative to specifications underlying results in Table 2, we change the included covariates to control for weather conditions, as stated in the

legend at the top. All regressions include fixed effects as described in Table 2 and are weighted by the number of active workers in a city

during the current month. First Stage F-Statistics range from 54 to 397.
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Figure 7: Robustness to Changes in Fixed Effects (Adjustment)

Notes: IV point estimates of the parameter 𝛽 in Equation (1), along with 95% confidence intervals. Dependent variables are denoted at the top

of each plot. Left side: regressor of interest is PM2.5 concentration in µg/𝑚3
. Right side: regressor of interest is an indicator for a PM2.5 shock.

Relative to specifications underlying results in Table 2, we change the included fixed effects, as stated in the legend at the top. All regressions

include control variables as described in Table 2 and are weighted by the number of active workers in a city during the current month. First

Stage F-Statistics range from 58 to 344.
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Figure 8: Robustness to Changes in Weather Controls (Adjustment)

Notes: IV point estimates of the parameter 𝛽 in Equation (1), along with 95% confidence intervals. Dependent variables are denoted at the top

of each plot. Left side: regressor of interest is PM2.5 concentration measured in µg/𝑚3
. Right side: regressor of interest is an indicator for a

PM2.5 shock. Relative to specifications underlying results in Table 2, we change the included covariates to control for weather conditions. We

state the included variables in the legend at the top. First stage specification is given in Equation (2). All regressions include fixed effects as

described in Table 2 and are weighted by the number of active workers in a city during the current month. First Stage F-Statistics range from

49 to 523.
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C Gitcoin

This section provides additional details regarding the data collected from Gitcoin to assess the

monetary value of output produced on GitHub and to validate some of our productivity and

task complexity outcomes.

We collect data on 292 Gitcoin transactions via the Gitcoin API, including the type of the

posted issue (bug, documentation, improvement, feature, or other), the expected issue difficulty

as assessed by the issue funders (beginner, intermediate, or advanced), the URL to the PR

solving the issue and awarded the payment, the value of the payment in USD, and the number

of hours worked on the PR as stated by the PR author. The number of issues is relatively low

compared to the volume of our GitHub data because Gitcoin is much younger than GitHub

and only used by a small share of GitHub users. Using the URL of the PR, we combine this

with information on pull request size obtained via the GitHub API, i.e. the number of commits

it comprises, the number of lines of code added and deleted, and the number of files changed.

This is possible because all Gitcoin issues and PRs are created in public GitHub repos and

thus visible to us. In this context, a pull request reflects the complete work on a certain issue.

Commits can be interpreted as single work steps in completing this task.

Combining the data on the amount of coding work done and on the payment made we can

estimate the monetary value of output produced in public GitHub repos. The average monetary

value per commit ranges from $32 in the subsample of issues of difficulty level beginner to

$679 among issues marked as advanced. In the full sample, it amounts to $112. The mean time

input per commit also exhibits a steep gradient with respect to difficulty: It is 1 hour at the

beginner level, but 5.3 hours at the advanced level.

To validate the use of the number of commits per day as one of our core measures of

developer productivity, we analyze how the number of commits in a PR correlates with the

payment awarded and the time spent on it in the Gitcoin sample.

Table 1 depicts results from regressions of the payment awarded for a PR, 𝑙𝑜𝑔(𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑖),
on the number of commits it comprises, 𝑐𝑜𝑚𝑚𝑖𝑡𝑠𝑖 (columns 1-3), or the logarithm thereof

(columns 4-6). We run specifications without any controls (columns 1 and 4), with controls for

issue difficulty, issue type and the year of PR creation (columns 2 and 5), and alternatively with

repository fixed effects (columns 3 and 6). The omitted difficulty category is advanced. Across

specifications we find statistically significant positive effects, indicating that a higher number

of commits is associated with higher payments. In terms of magnitude, the results from the

regressions without any controls imply that one additional commit is associated with a 5.4%

increase in payment (column 1), or that a 10% increase in the number of commits is correlated

with a 3.5% rise in payment (column 4). When adding controls for issue difficulty and type, the

magnitude of the effect is reduced. This reduction implies that part of the increase in payments

in commits is driven by higher issue complexity. Even when using only variation across PRs

submitted to the same repo, i.e., work on the same project, the positive relationship persists.
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Table 1: Validity Check: Number of Commits and Gitcoin Payments

log(payment𝑖 )

(1) (2) (3) (4) (5) (6)

commits𝑖 0.054 0.039 0.034

(.010) (.009) (.010)

log(commits𝑖 ) 0.348 0.264 0.192

(.071) (.068) (.059)

1{Difficulty𝑖 = Beginner} −2.399 −2.412

(.439) (.419)

1{Difficulty𝑖 = Intermediate} −1.878 −1.851

(.415) (.405)

Year dummies ✓ ✓ ✓ ✓
Issue difficulty ✓ ✓
Issue type ✓ ✓
Repository FE ✓ ✓
Observations 292 274 292 292 274 292

Notes: The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request

level. Dependent variable is the logarithm of the payment awarded to the PR author. Explanatory variables are the number of commits

(columns 1 to 3) or the logarithm thereof (columns 4 to 6). Columns 2 and 5 add dummies for the year the pull request was created, dummies

for issue difficulty, and dummies for issue type. Column 3 and 6 instead add dummies for the year the pull request was created and fixed

effects for the repository. Robust standard errors are reported in parentheses.

In Table 2 we present results from models where the dependent variable is ℎ𝑜𝑢𝑟𝑠𝑤𝑜𝑟𝑘𝑒𝑑𝑖 ,

the time input as reported by the PR author. We find that the time required to complete a task

increases in the number of commits, and more so for issues of higher difficulty.

To validate our proxies for PR complexity, we run the specifications from columns 4 to 6

of Table 1 again, but add the number of files changed in the PR and the logarithm of lines of

code added as additional regressors. Results are presented in Table 3. Holding the number

of commits constant, adding more lines of code and changing more files is associated with a

higher payment, suggesting that these variables indeed reflect task complexity.
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Table 2: Validity Check: Number of Commits and Hours Worked on a PR

hoursworked𝑖

(1) (2) (3) (4)

commits𝑖 0.375 0.939

(.132) (.341)

log(commits𝑖 ) 2.375 10.346

(.648) (3.535)

× 1{Difficulty𝑖 = Beginner} −0.882 −9.748

(.354) (3.574)

× 1{Difficulty𝑖 = Intermediate} −0.667 −8.471

(.349) (3.560)

Observations 271 267 271 267

Notes: The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request

level. Dependent variable is the number of hours worked reported by the PR author. In colunm 1 the only explanatory variable is the number

of commits in the PR. Column 2 adds dummies for issue difficulty and interactions between the number of commits and the difficulty dummies.

The ommited difficulty category is advanced. In columns 3 and 4 report results from the same models except that the number of commits is

replaced by the logarithm thereof. Robust standard errors are reported in parentheses.

Table 3: Validity check: PR complexity and Gitcoin payments

log(𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑖 )

(1) (2) (3) (4)

log(commits𝑖 ) 0.143 0.136 0.070 0.145

(0.067) (0.068) (0.058) (0.056)

fileschanged𝑖 0.005 0.007 0.011 0.004

(0.005) (0.004) (0.004) (0.004)

log(linesadded𝑖 ) 0.152 0.112 0.091 0.150

(0.036) (0.035) (0.028) (0.033)

easylabel𝑖 −0.348

(0.173)

Year dummies ✓ ✓ ✓ ✓
Issue difficulty dummies ✓
Issue type dummies ✓
Repository FE ✓
Observations 292 274 292 270

Notes: The table presents results from OLS regressions using data on the sample of Gitcoin pull requests. Observations are at the pull request

level. Dependent variable is the logarithm of the payment awarded to the PR author. Explanatory variables are the number of commits and

the number of lines of code added in the PR (both in logs), the number of code files changed and dummies for the year the pull request was

created. Column 2 adds dummies for issue difficulty and issue type. Column 3 instead adds fixed effects for the repository. Column 4 instead

adds a dummy variable taking a value of one if the issue addressed by the PR carries a label that we classify as indicating an easy issue. The

number of lines of code added and of files changed in the PR are winsorized at the 1st and the 99th percentile. Robust standard errors are

reported in parentheses.
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D Auxiliary Regressions

For estimating equation (1), measures of the output of each individual developer 𝑖 are aggregated

to the city-day level. Instead of forming simple averages, we take into account additional

information at the developer level. This is done by estimating auxiliary regression, a common

approach in this literature (e.g. Currie et al., 2015). In a first step, we estimate regressions for

outcome 𝑦 of developer 𝑖 living in city 𝑐 on day 𝑑 of the following kind.

𝑦𝑖,𝑐,𝑑 =𝜇𝑖 + x′
𝑖,𝑑
𝜋 +𝜓𝑐,𝑑 + 𝜀𝑖,𝑐,𝑑 (1)

Here, 𝑦𝑖,𝑐,𝑑 denotes one of the measures of developer output, task choice, or working hours. The

fixed effect 𝜇𝑖 captures time-invariant unobserved factors at the developer level. Including these

is important as the composition of developers changes over time. A developer’s experience is

controlled for by x𝑖,𝑡 , a vector of indicators for time since registration on GitHub, where each

indicator represents a time span of three months. Additionally, equation (1) includes city-day

fixed effects. Their estimates 𝜓𝑐,𝑑 give the average outcome for a city-day after controlling

for experience and composition effects. These estimates replace the dependent variable in

equation (1).

This approach is computationally less costly and asymptotically equivalent to directly

estimating the regressions at the individual developer level (Donald and Lang, 2007). We take

into account the sample variance by weighting all regressions by the number of underlying

developer observations in each city-day cell (cf. Currie and Neidell, 2005; Isen et al., 2017).
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